Switch to: Citations

Add references

You must login to add references.
  1. (1 other version)The formulae-as-types notion of construction.William Alvin Howard - 1980 - In Haskell Curry, Hindley B., Seldin J. Roger & P. Jonathan (eds.), To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism. Academic Press.
    Download  
     
    Export citation  
     
    Bookmark   95 citations  
  • (1 other version)An Intuitionistic Theory of Types: Predicative Part.Per Martin-Löf - 1975 - In H. E. Rose & J. C. Shepherdson (eds.), Logic Colloquium ’73 Proceedings of the Logic Colloquium. Elsevier. pp. 73--118.
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • Structuralism, Invariance, and Univalence.Steve Awodey - 2014 - Philosophia Mathematica 22 (1):1-11.
    The recent discovery of an interpretation of constructive type theory into abstract homotopy theory suggests a new approach to the foundations of mathematics with intrinsic geometric content and a computational implementation. Voevodsky has proposed such a program, including a new axiom with both geometric and logical significance: the Univalence Axiom. It captures the familiar aspect of informal mathematical practice according to which one can identify isomorphic objects. While it is incompatible with conventional foundations, it is a powerful addition to homotopy (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • A Primer of Infinitesimal Analysis.John Lane Bell - 1998 - Cambridge University Press.
    This is the first elementary book to employ the concept of infinitesimals.
    Download  
     
    Export citation  
     
    Bookmark   57 citations  
  • (1 other version)Identity in Homotopy Type Theory, Part I: The Justification of Path Induction.James Ladyman & Stuart Presnell - 2015 - Philosophia Mathematica 23 (3):386-406.
    Homotopy Type Theory is a proposed new language and foundation for mathematics, combining algebraic topology with logic. An important rule for the treatment of identity in HoTT is path induction, which is commonly explained by appeal to the homotopy interpretation of the theory's types, tokens, and identities as spaces, points, and paths. However, if HoTT is to be an autonomous foundation then such an interpretation cannot play a fundamental role. In this paper we give a derivation of path induction, motivated (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • On the meanings of the logical constants and the justifications of the logical laws.Per Martin-Löf - 1996 - Nordic Journal of Philosophical Logic 1 (1):11-60.
    Download  
     
    Export citation  
     
    Bookmark   79 citations  
  • Formalism.Michael Detlefsen - 2005 - In Stewart Shapiro (ed.), Oxford Handbook of Philosophy of Mathematics and Logic. Oxford and New York: Oxford University Press. pp. 236--317.
    A comprehensive historical overview of formalist ideas in the philosophy of mathematics.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Logical consequence, proof theory, and model theory.Stewart Shapiro - 2005 - In Oxford Handbook of Philosophy of Mathematics and Logic. Oxford and New York: Oxford University Press. pp. 651--670.
    This chapter provides broad coverage of the notion of logical consequence, exploring its modal, semantic, and epistemic aspects. It develops the contrast between proof-theoretic notion of consequence, in terms of deduction, and a model-theoretic approach, in terms of truth-conditions. The main purpose is to relate the formal, technical work in logic to the philosophical concepts that underlie reasoning.
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  • Category theory as an autonomous foundation.Øystein Linnebo & Richard Pettigrew - 2011 - Philosophia Mathematica 19 (3):227-254.
    Does category theory provide a foundation for mathematics that is autonomous with respect to the orthodox foundation in a set theory such as ZFC? We distinguish three types of autonomy: logical, conceptual, and justificatory. Focusing on a categorical theory of sets, we argue that a strong case can be made for its logical and conceptual autonomy. Its justificatory autonomy turns on whether the objects of a foundation for mathematics should be specified only up to isomorphism, as is customary in other (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Foundations without foundationalism: a case for second-order logic.Stewart Shapiro - 1991 - New York: Oxford University Press.
    The central contention of this book is that second-order logic has a central role to play in laying the foundations of mathematics. In order to develop the argument fully, the author presents a detailed description of higher-order logic, including a comprehensive discussion of its semantics. He goes on to demonstrate the prevalence of second-order concepts in mathematics and the extent to which mathematical ideas can be formulated in higher-order logic. He also shows how first-order languages are often insufficient to codify (...)
    Download  
     
    Export citation  
     
    Bookmark   231 citations  
  • Mathematics without foundations.Hilary Putnam - 1967 - Journal of Philosophy 64 (1):5-22.
    Download  
     
    Export citation  
     
    Bookmark   140 citations  
  • (1 other version)An Intuitionistic Theory of Types: Predicative Part.Per Martin-Löf - 1975 - In ¸ Iterose1975. North Holland.
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • Essentially-Negative Properties. [REVIEW]Alfons Borgers - 1949 - Journal of Symbolic Logic 14 (2):137-138.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • An Unsolvable Problem of Elementary Number Theory.Alonzo Church - 1936 - Journal of Symbolic Logic 1 (2):73-74.
    Download  
     
    Export citation  
     
    Bookmark   175 citations  
  • Verificationism Then and Now.Per Martin-löf - 1995 - Vienna Circle Institute Yearbook 3:187-196.
    The term verificationism is used in two different ways: the first is in relation to the verification principle of meaning, which we usually and rightly associate with the logical empiricists, although, as we now know, it derives in reality from Wittgenstein, and the second is in relation to the theory of meaning for intuitionistic logic that has been developed, beginning of course with Brouwer, Heyting and Kolmogorov in the twenties and early thirties, but in much more detail lately, particularly in (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Knowledge of Mathematics without Proof.Alexander Paseau - 2015 - British Journal for the Philosophy of Science 66 (4):775-799.
    Mathematicians do not claim to know a proposition unless they think they possess a proof of it. For all their confidence in the truth of a proposition with weighty non-deductive support, they maintain that, strictly speaking, the proposition remains unknown until such time as someone has proved it. This article challenges this conception of knowledge, which is quasi-universal within mathematics. We present four arguments to the effect that non-deductive evidence can yield knowledge of a mathematical proposition. We also show that (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Homotopy theoretic models of identity types.Steve Awodey & Michael A. Warren - unknown
    Quillen [17] introduced model categories as an abstract framework for homotopy theory which would apply to a wide range of mathematical settings. By all accounts this program has been a success and—as, e.g., the work of Voevodsky on the homotopy theory of schemes [15] or the work of Joyal [11, 12] and Lurie [13] on quasicategories seem to indicate—it will likely continue to facilitate mathematical advances. In this paper we present a novel connection between model categories and mathematical logic, inspired (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • The Indispensability of Mathematics.Mark Colyvan - 2001 - Oxford, England: Oxford University Press.
    This book not only outlines the indispensability argument in considerable detail but also defends it against various challenges.
    Download  
     
    Export citation  
     
    Bookmark   277 citations  
  • (1 other version)The formulæ-as-types notion of construction.W. A. Howard - 1995 - In Philippe De Groote (ed.), The Curry-Howard isomorphism. Louvain-la-Neuve: Academia.
    Download  
     
    Export citation  
     
    Bookmark   68 citations  
  • Structure in mathematics and logic: A categorical perspective.S. Awodey - 1996 - Philosophia Mathematica 4 (3):209-237.
    A precise notion of ‘mathematical structure’ other than that given by model theory may prove fruitful in the philosophy of mathematics. It is shown how the language and methods of category theory provide such a notion, having developed out of a structural approach in modern mathematical practice. As an example, it is then shown how the categorical notion of a topos provides a characterization of ‘logical structure’, and an alternative to the Pregean approach to logic which is continuous with the (...)
    Download  
     
    Export citation  
     
    Bookmark   69 citations  
  • Science without numbers, A Defence of Nominalism.Hartry Field - 1980 - Revue Philosophique de la France Et de l'Etranger 171 (4):502-503.
    Download  
     
    Export citation  
     
    Bookmark   167 citations  
  • Philosophy of Mathematics.Paul Benacerraf & Hilary Putnam - 1985 - Philosophy of Science 52 (3):488-489.
    Download  
     
    Export citation  
     
    Bookmark   95 citations  
  • Mathematical intuition and objectivity.Daniel Isaacson - 1994 - In Alexander George (ed.), Mathematics and mind. New York: Oxford University Press. pp. 118--140.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Philosophy of Mathematics.P. Benacerraf H. Putnam (ed.) - 1964 - Prentice-Hall.
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • Nonlocality and the aharonov-Bohm effect.Richard Healey - 1997 - Philosophy of Science 64 (1):18-41.
    At first sight the Aharonov- Bohm effect appears nonlocal, though not in the way EPR/Bell correlations are generally acknowledged to be nonlocal. This paper applies an analysis of nonlocality to the Aharonov- Bohm effect to show that its peculiarities may be blamed either on a failure of a principle of local action or on a failure of a principle of separability. Different interpretations of quantum mechanics disagree on how blame should be allocated. The parallel between the Aharonov- Bohm effect and (...)
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • What is required of a foundation for mathematics?John Mayberry - 1994 - Philosophia Mathematica 2 (1):16-35.
    The business of mathematics is definition and proof, and its foundations comprise the principles which govern them. Modern mathematics is founded upon set theory. In particular, both the axiomatic method and mathematical logic belong, by their very natures, to the theory of sets. Accordingly, foundational set theory is not, and cannot logically be, an axiomatic theory. Failure to grasp this point leads obly to confusion. The idea of a set is that of an extensional plurality, limited and definite in size, (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Intuitionism in Mathematics.D. C. McCarty - 2005 - In Stewart Shapiro (ed.), Oxford Handbook of Philosophy of Mathematics and Logic. Oxford and New York: Oxford University Press.
    This chapter presents and illustrates fundamental principles of the intuitionistic mathematics devised by L.E.J. Brouwer and then describes in largely nontechnical terms metamathematical results that shed light on the logical character of that mathematics. The fundamental principles, such as Uniformity and Brouwer’s Theorem, are drawn from the intuitionistic studies of logic and topology. The metamathematical results include Gödel’s negative and modal translations and Kleene’s realizability interpretation. The chapter closes with an assessment of anti-realism as a philosophy of intuitionism.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Featherless Biped.[author unknown] - 1979 - Proceedings and Addresses of the American Philosophical Association 52 (4):532-536.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • The Foundations of Mathematics.David Hilbert - 1927 - In ¸ Itevanheijenoort1967. Harvard University Press.
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Science without Numbers.Michael D. Resnik - 1983 - Noûs 17 (3):514-519.
    Download  
     
    Export citation  
     
    Bookmark   164 citations  
  • Science Without Numbers: A Defence of Nominalism.Michael Lockwood - 1982 - Philosophical Quarterly 32 (128):281-283.
    Download  
     
    Export citation  
     
    Bookmark   33 citations