Switch to: References

Citations of:

A Primer of Infinitesimal Analysis

Cambridge University Press (1998)

Add citations

You must login to add citations.
  1. (1 other version)Forever Finite: The Case Against Infinity (Expanded Edition).Kip K. Sewell - 2023 - Alexandria, VA: Rond Books.
    EXPANDED EDITION (eBook): -/- Infinity Is Not What It Seems...Infinity is commonly assumed to be a logical concept, reliable for conducting mathematics, describing the Universe, and understanding the divine. Most of us are educated to take for granted that there exist infinite sets of numbers, that lines contain an infinite number of points, that space is infinite in expanse, that time has an infinite succession of events, that possibilities are infinite in quantity, and over half of the world’s population believes (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Modalité et changement: δύναμις et cinétique aristotélicienne.Marion Florian - 2023 - Dissertation, Université Catholique de Louvain
    The present PhD dissertation aims to examine the relation between modality and change in Aristotle’s metaphysics. -/- On the one hand, Aristotle supports his modal realism (i.e., worldly objects have modal properties - potentialities and essences - that ground the ascriptions of possibility and necessity) by arguing that the rejection of modal realism makes change inexplicable, or, worse, banishes it from the realm of reality. On the other hand, the Stagirite analyses processes by means of modal notions (‘change is the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • How Do You Apply Mathematics?Graham Priest - 2022 - Axiomathes 32 (3):1169-1184.
    As far as disputes in the philosophy of pure mathematics goes, these are usually between classical mathematics, intuitionist mathematics, paraconsistent mathematics, and so on. My own view is that of a mathematical pluralist: all these different kinds of mathematics are equally legitimate. Applied mathematics is a different matter. In this, a piece of pure mathematics is applied in an empirical area, such as physics, biology, or economics. There can then certainly be a disputes about what the correct pure mathematics to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Does Homotopy Type Theory Provide a Foundation for Mathematics?James Ladyman & Stuart Presnell - 2016 - British Journal for the Philosophy of Science:axw006.
    Homotopy Type Theory is a putative new foundation for mathematics grounded in constructive intensional type theory that offers an alternative to the foundations provided by ZFC set theory and category theory. This article explains and motivates an account of how to define, justify, and think about HoTT in a way that is self-contained, and argues that, so construed, it is a candidate for being an autonomous foundation for mathematics. We first consider various questions that a foundation for mathematics might be (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Language and the Self-Reference Paradox.Julio Michael Stern - 2007 - Cybernetics and Human Knowing 14 (4):71-92.
    Heinz Von Forester characterizes the objects “known” by an autopoietic system as eigen-solutions, that is, as discrete, separable, stable and composable states of the interaction of the system with its environment. Previous articles have presented the FBST, Full Bayesian Significance Test, as a mathematical formalism specifically designed to access the support for sharp statistical hypotheses, and have shown that these hypotheses correspond, from a constructivist perspective, to systemic eigen-solutions in the practice of science. In this article several issues related to (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Categoricity by convention.Julien Murzi & Brett Topey - 2021 - Philosophical Studies 178 (10):3391-3420.
    On a widespread naturalist view, the meanings of mathematical terms are determined, and can only be determined, by the way we use mathematical language—in particular, by the basic mathematical principles we’re disposed to accept. But it’s mysterious how this can be so, since, as is well known, minimally strong first-order theories are non-categorical and so are compatible with countless non-isomorphic interpretations. As for second-order theories: though they typically enjoy categoricity results—for instance, Dedekind’s categoricity theorem for second-order and Zermelo’s quasi-categoricity theorem (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Logic, Mathematics, Philosophy, Vintage Enthusiasms: Essays in Honour of John L. Bell.David DeVidi, Michael Hallett & Peter Clark (eds.) - 2011 - Dordrecht, Netherland: Springer.
    The volume includes twenty-five research papers presented as gifts to John L. Bell to celebrate his 60th birthday by colleagues, former students, friends and admirers. Like Bell’s own work, the contributions cross boundaries into several inter-related fields. The contributions are new work by highly respected figures, several of whom are among the key figures in their fields. Some examples: in foundations of maths and logic ; analytical philosophy, philosophy of science, philosophy of mathematics and decision theory and foundations of economics. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Maddy On The Multiverse.Claudio Ternullo - 2019 - In Stefania Centrone, Deborah Kant & Deniz Sarikaya (eds.), Reflections on the Foundations of Mathematics: Univalent Foundations, Set Theory and General Thoughts. Springer Verlag. pp. 43-78.
    Penelope Maddy has recently addressed the set-theoretic multiverse, and expressed reservations on its status and merits ([Maddy, 2017]). The purpose of the paper is to examine her concerns, by using the interpretative framework of set-theoretic naturalism. I first distinguish three main forms of 'multiversism', and then I proceed to analyse Maddy's concerns. Among other things, I take into account salient aspects of multiverse-related mathematics , in particular, research programmes in set theory for which the use of the multiverse seems to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Why logical pluralism?Colin R. Caret - 2019 - Synthese 198 (Suppl 20):4947-4968.
    This paper scrutinizes the debate over logical pluralism. I hope to make this debate more tractable by addressing the question of motivating data: what would count as strong evidence in favor of logical pluralism? Any research program should be able to answer this question, but when faced with this task, many logical pluralists fall back on brute intuitions. This sets logical pluralism on a weak foundation and makes it seem as if nothing pressing is at stake in the debate. The (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • À Maneira de Um Colar de Pérolas?André Porto - 2017 - Revista Portuguesa de Filosofia 73 (3-4):1381-1404.
    This paper offers an overview of various alternative formulations for Analysis, the theory of Integral and Differential Calculus, and its diverging conceptions of the topological structure of the continuum. We pay particularly attention to Smooth Analysis, a proposal created by William Lawvere and Anders Kock based on Grothendieck’s work on a categorical algebraic geometry. The role of Heyting’s logic, common to all these alternatives is emphasized.
    Download  
     
    Export citation  
     
    Bookmark  
  • Explanation of Qualia and Self-Awareness Using Elastic Membrane Concept.Alexander Egoyan - 2017 - General Science Journal 2:10-16.
    In this work we show that our self-awareness and perception may be successfully explained using two dimensional holistic structures with closed topology embedded into our brains - elastic membranes. These membranes are able to preserve their structure during conscious processes. Their elastic oscillations may be associated with our perceptions, where the frequency of the oscillations is responsible for the perception of different colors, sounds and other stimuli, while the amplitude of the oscillations is responsible for the feeling of a distance. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Wittgenstein Sobre as Provas Indutivas.André Porto - 2009 - Dois Pontos 6 (2).
    This paper offers a reconstruction of Wittgenstein's discussion on inductive proofs. A "algebraic version" of these indirect proofs is offered and contrasted with the usual ones in which an infinite sequence of modus pones is projected.
    Download  
     
    Export citation  
     
    Bookmark  
  • Translating Logical Terms.Stewart Shapiro - 2019 - Topoi 38 (2):291-303.
    The is an old question over whether there is a substantial disagreement between advocates of different logics, as they simply attach different meanings to the crucial logical terminology. The purpose of this article is to revisit this old question in light a pluralism/relativism that regards the various logics as equally legitimate, in their own contexts. We thereby address the vexed notion of translation, as it occurs between mathematical theories. We articulate and defend a thesis that the notion of “same meaning” (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A New Interpretation of Carnap’s Logical Pluralism.Teresa Kouri - 2019 - Topoi 38 (2):305-314.
    Rudolf Carnap’s logical pluralism is often held to be one in which corresponding connectives in different logics have different meanings. This paper presents an alternative view of Carnap’s position, in which connectives can and do share their meaning in some contexts. This re-interpretation depends crucially on extending Carnap’s linguistic framework system to include meta-linguistic frameworks, those frameworks which we use to talk about linguistic frameworks. I provide an example that shows how this is possible, and give some textual evidence that (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Existence Assumptions and Logical Principles: Choice Operators in Intuitionistic Logic.Corey Edward Mulvihill - 2015 - Dissertation, University of Waterloo
    Hilbert’s choice operators τ and ε, when added to intuitionistic logic, strengthen it. In the presence of certain extensionality axioms they produce classical logic, while in the presence of weaker decidability conditions for terms they produce various superintuitionistic intermediate logics. In this thesis, I argue that there are important philosophical lessons to be learned from these results. To make the case, I begin with a historical discussion situating the development of Hilbert’s operators in relation to his evolving program in the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Zeno’s arrow and the infinitesimal calculus.Patrick Reeder - 2015 - Synthese 192 (5):1315-1335.
    I offer a novel solution to Zeno’s paradox of The Arrow by introducing nilpotent infinitesimal lengths of time. Nilpotents are nonzero numbers that yield zero when multiplied by themselves a certain number of times. Zeno’s Arrow goes like this: during the present, a flying arrow is moving in virtue of its being in flight. However, if the present is a single point in time, then the arrow is frozen in place during that time. Therefore, the arrow is both moving and (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Louis Joly as a Platonist Painter?Roger Pouivet - 2006 - In Johan van Benthem, Gerhard Heinzman, M. Rebushi & H. Visser (eds.), The Age of Alternative Logics: Assessing Philosophy of Logic and Mathematics Today. Dordrecht, Netherland: Springer. pp. 337--341.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Age of Alternative Logics: Assessing Philosophy of Logic and Mathematics Today.Johan van Benthem, Gerhard Heinzman, M. Rebushi & H. Visser (eds.) - 2006 - Dordrecht, Netherland: Springer.
    This book explores the interplay between logic and science, describing new trends, new issues and potential research developments.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Regularity and Hyperreal Credences.Kenny Easwaran - 2014 - Philosophical Review 123 (1):1-41.
    Many philosophers have become worried about the use of standard real numbers for the probability function that represents an agent's credences. They point out that real numbers can't capture the distinction between certain extremely unlikely events and genuinely impossible ones—they are both represented by credence 0, which violates a principle known as “regularity.” Following Skyrms 1980 and Lewis 1980, they recommend that we should instead use a much richer set of numbers, called the “hyperreals.” This essay argues that this popular (...)
    Download  
     
    Export citation  
     
    Bookmark   84 citations  
  • Deleuze, Leibniz and Projective Geometry in the Fold.Simon Duffy - 2010 - Angelaki 15 (2):129-147.
    Explications of the reconstruction of Leibniz’s metaphysics that Deleuze undertakes in 'The Fold: Leibniz and the Baroque' focus predominantly on the role of the infinitesimal calculus developed by Leibniz.1 While not underestimat- ing the importance of the infinitesimal calculus and the law of continuity as reflected in the calculus of infinite series to any understanding of Leibniz’s metaphysics and to Deleuze’s reconstruction of it in The Fold, what I propose to examine in this paper is the role played by other (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Role of Mathematics in Deleuze’s Critical Engagement with Hegel.Simon Duffy - 2009 - International Journal of Philosophical Studies 17 (4):563 – 582.
    The role of mathematics in the development of Gilles Deleuze's (1925-95) philosophy of difference as an alternative to the dialectical philosophy determined by the Hegelian dialectic logic is demonstrated in this paper by differentiating Deleuze's interpretation of the problem of the infinitesimal in Difference and Repetition from that which G. W. F Hegel (1770-1831) presents in the Science of Logic . Each deploys the operation of integration as conceived at different stages in the development of the infinitesimal calculus in his (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The principle of general tovariance.Chris Heunen, Klaas Landsman & Bas Spitters - unknown
    We tentatively propose two guiding principles for the construction of theories of physics, which should be satisfied by a possible future theory of quantum gravity. These principles are inspired by those that led Einstein to his theory of general relativity, viz. his principle of general covariance and his equivalence principle, as well as by the two mysterious dogmas of Bohr's interpretation of quantum mechanics, i.e. his doctrine of classical concepts and his principle of complementarity. An appropriate mathematical language for combining (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Against pointillisme about mechanics.Jeremy Butterfield - 2006 - British Journal for the Philosophy of Science 57 (4):709-753.
    This paper forms part of a wider campaign: to deny pointillisme, the doctrine that a physical theory's fundamental quantities are defined at points of space or of spacetime, and represent intrinsic properties of such points or point-sized objects located there; so that properties of spatial or spatiotemporal regions and their material contents are determined by the point-by-point facts. More specifically, this paper argues against pointillisme about the concept of velocity in classical mechanics; especially against proposals by Tooley, Robinson and Lewis. (...)
    Download  
     
    Export citation  
     
    Bookmark   60 citations  
  • The meaning of category theory for 21st century philosophy.Alberto Peruzzi - 2006 - Axiomathes 16 (4):424-459.
    Among the main concerns of 20th century philosophy was that of the foundations of mathematics. But usually not recognized is the relevance of the choice of a foundational approach to the other main problems of 20th century philosophy, i.e., the logical structure of language, the nature of scientific theories, and the architecture of the mind. The tools used to deal with the difficulties inherent in such problems have largely relied on set theory and its “received view”. There are specific issues, (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Leibniz’s syncategorematic infinitesimals.Richard T. W. Arthur - 2013 - Archive for History of Exact Sciences 67 (5):553-593.
    In contrast with some recent theories of infinitesimals as non-Archimedean entities, Leibniz’s mature interpretation was fully in accord with the Archimedean Axiom: infinitesimals are fictions, whose treatment as entities incomparably smaller than finite quantities is justifiable wholly in terms of variable finite quantities that can be taken as small as desired, i.e. syncategorematically. In this paper I explain this syncategorematic interpretation, and how Leibniz used it to justify the calculus. I then compare it with the approach of Smooth Infinitesimal Analysis, (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • A note on mathematical pluralism and logical pluralism.Graham Priest - 2019 - Synthese 198 (Suppl 20):4937-4946.
    Mathematical pluralism notes that there are many different kinds of pure mathematical structures—notably those based on different logics—and that, qua pieces of pure mathematics, they are all equally good. Logical pluralism is the view that there are different logics, which are, in an appropriate sense, equally good. Some, such as Shapiro, have argued that mathematical pluralism entails logical pluralism. In this brief note I argue that this does not follow. There is a crucial distinction to be drawn between the preservation (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Possibilities, models, and intuitionistic logic: Ian Rumfitt’s The boundary stones of thought.Stewart Shapiro - 2019 - Inquiry: An Interdisciplinary Journal of Philosophy 62 (7):812-825.
    ABSTRACTAIan Rumfitt's new book presents a distinctive and intriguing philosophy of logic, one that ultimately settles on classical logic as the uniquely correct one–or at least rebuts some prominent arguments against classical logic. The purpose of this note is to evaluate Rumfitt's perspective by focusing on some themes that have occupied me for some time: the role and importance of model theory and, in particular, the place of counter-arguments in establishing invalidity, higher-order logic, and the logical pluralism/relativism articulated in my (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Incomplete Understanding of Concepts: The Case of the Derivative.Sheldon R. Smith - 2015 - Mind 124 (496):1163-1199.
    Many philosophers have discussed the ability of thinkers to think thoughts that the thinker cannot justify because the thoughts involve concepts that the thinker incompletely understands. A standard example of this phenomenon involves the concept of the derivative in the early days of the calculus: Newton and Leibniz incompletely understood the derivative concept and, hence, as Berkeley noted, they could not justify their thoughts involving it. Later, Weierstrass justified their thoughts by giving a correct explication of the derivative concept. This (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Deleuze and Mathematics.Simon B. Duffy - 2006 - In Simon Duffy (ed.), Virtual Mathematics: the logic of difference. Clinamen.
    The collection Virtual Mathematics: the logic of difference brings together a range of new philosophical engagements with mathematics, using the work of French philosopher Gilles Deleuze as its focus. Deleuze’s engagements with mathematics rely upon the construction of alternative lineages in the history of mathematics in order to reconfigure particular philosophical problems and to develop new concepts. These alternative conceptual histories also challenge some of the self-imposed limits of the discipline of mathematics, and suggest the possibility of forging new connections (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Against Pointillisme about Geometry.Jeremy Butterfield - 2006 - In Friedrich Stadler & Michael Stöltzner (eds.), Time and History: Proceedings of the 28. International Ludwig Wittgenstein Symposium, Kirchberg Am Wechsel, Austria 2005. Frankfurt, Germany: De Gruyter. pp. 181-222.
    This paper forms part of a wider campaign: to deny pointillisme. That is the doctrine that a physical theory's fundamental quantities are defined at points of space or of spacetime, and represent intrinsic properties of such points or point-sized objects located there; so that properties of spatial or spatiotemporal regions and their material contents are determined by the point-by-point facts. More specifically, this paper argues against pointillisme about the structure of space and-or spacetime itself, especially a paper by Bricker (1993). (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Mathematics, indispensability and scientific progress.Alan Baker - 2001 - Erkenntnis 55 (1):85-116.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Leibniz's syncategorematic infinitesimals, smooth infinitesimal analysis, and Newton's proposition.Richard Arthur - manuscript
    In contrast with some recent theories of infinitesimals as non-Archimedean entities, Leibniz’s mature interpretation was fully in accord with the Archimedean Axiom: infinitesimals are fictions, whose treatment as entities incomparably smaller than finite quantities is justifiable wholly in terms of variable finite quantities that can be taken as small as desired, i.e. syncategorematically. In this paper I explain this syncategorematic interpretation, and how Leibniz used it to justify the calculus. I then compare it with the approach of Smooth Infinitesimal Analysis (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Interpreting the Infinitesimal Mathematics of Leibniz and Euler.Jacques Bair, Piotr Błaszczyk, Robert Ely, Valérie Henry, Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz, Semen S. Kutateladze, Thomas McGaffey, Patrick Reeder, David M. Schaps, David Sherry & Steven Shnider - 2017 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 48 (2):195-238.
    We apply Benacerraf’s distinction between mathematical ontology and mathematical practice to examine contrasting interpretations of infinitesimal mathematics of the seventeenth and eighteenth century, in the work of Bos, Ferraro, Laugwitz, and others. We detect Weierstrass’s ghost behind some of the received historiography on Euler’s infinitesimal mathematics, as when Ferraro proposes to understand Euler in terms of a Weierstrassian notion of limit and Fraser declares classical analysis to be a “primary point of reference for understanding the eighteenth-century theories.” Meanwhile, scholars like (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Toward a Clarity of the Extreme Value Theorem.Karin U. Katz, Mikhail G. Katz & Taras Kudryk - 2014 - Logica Universalis 8 (2):193-214.
    We apply a framework developed by C. S. Peirce to analyze the concept of clarity, so as to examine a pair of rival mathematical approaches to a typical result in analysis. Namely, we compare an intuitionist and an infinitesimal approaches to the extreme value theorem. We argue that a given pre-mathematical phenomenon may have several aspects that are not necessarily captured by a single formalisation, pointing to a complementarity rather than a rivalry of the approaches.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Truth, Revenge, and Internalizability.Kevin Scharp - 2014 - Erkenntnis 79 (3):597-645.
    Although there has been a recent swell of interest in theories of truth that attempt solutions to the liar paradox and the other paradoxes affecting our concept of truth, many of these theories have been criticized for generating new paradoxes, called revenge paradoxes. The criticism is that the theories of truth in question are inadequate because they only work for languages lacking in the resources to generate revenge paradoxes. Theorists facing these objections offer a range of replies, and the matter (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Leibniz’s Infinitesimals: Their Fictionality, Their Modern Implementations, and Their Foes from Berkeley to Russell and Beyond. [REVIEW]Mikhail G. Katz & David Sherry - 2013 - Erkenntnis 78 (3):571-625.
    Many historians of the calculus deny significant continuity between infinitesimal calculus of the seventeenth century and twentieth century developments such as Robinson’s theory. Robinson’s hyperreals, while providing a consistent theory of infinitesimals, require the resources of modern logic; thus many commentators are comfortable denying a historical continuity. A notable exception is Robinson himself, whose identification with the Leibnizian tradition inspired Lakatos, Laugwitz, and others to consider the history of the infinitesimal in a more favorable light. Inspite of his Leibnizian sympathies, (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • The causal story of the double slit experiment in quantum real numbers.John Vincent Corbett - unknown
    A causal story of the double slit experiment for a massive scalar particle is told using quantum real numbers as the numerical values of the position and momentum of the particle. The quantum real number interpretation postulates an independent physical reality for the quantum particle. It provides an ontology for the particle in which its qualities have numerical values even when they have not been measured. It satisfies experimental tests to the same degree of accuracy as the standard quantum theory (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Observations on category theory.John L. Bell - 2001 - Axiomathes 12 (1-2):151-155.
    is a presentation of mathematics in terms of the fundamental concepts of transformation, and composition of transformations. While the importance of these concepts had long been recognized in algebra (for example, by Galois through the idea of a group of permutations) and in geometry (for example, by Klein in his Erlanger Programm), the truly universal role they play in mathematics did not really begin to be appreciated until the rise of abstract algebra in the 1930s. In abstract algebra the idea (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • A constructivist perspective on physics.Peter Fletcher - 2002 - Philosophia Mathematica 10 (1):26-42.
    This paper examines the problem of extending the programme of mathematical constructivism to applied mathematics. I am not concerned with the question of whether conventional mathematical physics makes essential use of the principle of excluded middle, but rather with the more fundamental question of whether the concept of physical infinity is constructively intelligible. I consider two kinds of physical infinity: a countably infinite constellation of stars and the infinitely divisible space-time continuum. I argue (contrary to Hellman) that these do not. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Exploring Categorical Structuralism.C. Mclarty - 2004 - Philosophia Mathematica 12 (1):37-53.
    Hellman [2003] raises interesting challenges to categorical structuralism. He starts citing Awodey [1996] which, as Hellman sees, is not intended as a foundation for mathematics. It offers a structuralist framework which could denned in any of many different foundations. But Hellman says Awodey's work is 'naturally viewed in the context of Mac Lane's repeated claim that category theory provides an autonomous foundation for mathematics as an alternative to set theory' (p. 129). Most of Hellman's paper 'scrutinizes the formulation of category (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Stevin Numbers and Reality.Karin Usadi Katz & Mikhail G. Katz - 2012 - Foundations of Science 17 (2):109-123.
    We explore the potential of Simon Stevin’s numbers, obscured by shifting foundational biases and by 19th century developments in the arithmetisation of analysis.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • An Algebraic Approach to Physical Fields.Lu Chen & Tobias Fritz - 2021 - Studies in History and Philosophy of Science Part A 89 (C):188-201.
    According to the algebraic approach to spacetime, a thoroughgoing dynamicism, physical fields exist without an underlying manifold. This view is usually implemented by postulating an algebraic structure (e.g., commutative ring) of scalar-valued functions, which can be interpreted as representing a scalar field, and deriving other structures from it. In this work, we point out that this leads to the unjustified primacy of an undetermined scalar field. Instead, we propose to consider algebraic structures in which all (and only) physical fields are (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Teoria kategorii i niektóre jej logiczne aspekty (Category theory and some of its logical aspects).Mariusz Stopa - 2018 - Philosophical Problems in Science 64:7-58.
    [The paper is in Polish, an English abstract is given only for information.] This article is intended for philosophers and logicians as a short partial introduction to category theory and its peculiar connection with logic. First, we consider CT itself. We give a brief insight into its history, introduce some basic definitions and present examples. In the second part, we focus on categorical topos semantics for propositional logic. We give some properties of logic in toposes, which, in general, is an (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Conceptions of the continuum.Solomon Feferman - unknown
    Key words: the continuum, structuralism, conceptual structuralism, basic structural conceptions, Euclidean geometry, Hilbertian geometry, the real number system, settheoretical conceptions, phenomenological conceptions, foundational conceptions, physical conceptions.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Category theory.Jean-Pierre Marquis - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Structures and Logics: A Case for (a) Relativism.Stewart Shapiro - 2014 - Erkenntnis 79 (2):309-329.
    In this paper, I use the cases of intuitionistic arithmetic with Church’s thesis, intuitionistic analysis, and smooth infinitesimal analysis to argue for a sort of pluralism or relativism about logic. The thesis is that logic is relative to a structure. There are classical structures, intuitionistic structures, and (possibly) paraconsistent structures. Each such structure is a legitimate branch of mathematics, and there does not seem to be an interesting logic that is common to all of them. One main theme of my (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Hermann Weyl on intuition and the continuum.John L. Bell - 2000 - Philosophia Mathematica 8 (3):259-273.
    Hermann Weyl, one of the twentieth century's greatest mathematicians, was unusual in possessing acute literary and philosophical sensibilities—sensibilities to which he gave full expression in his writings. In this paper I use quotations from these writings to provide a sketch of Weyl's philosophical orientation, following which I attempt to elucidate his views on the mathematical continuum, bringing out the central role he assigned to intuition.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • The continuum in smooth infinitesimal analysis.John Bell - manuscript
    The relation ≤ on R is defined by a ≤ b ⇔ ¬b < a. The open interval (a, b) and closed interval [a, b] are defined as usual, viz. (a, b) = {x: a < x < b} and [a, b] = {x: a ≤ x ≤ b}; similarly for half-open, half-closed, and unbounded intervals.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Teoría de Modelos o la venganza de Peacock.Wilfrid Hodges - 2006 - Azafea: Revista de Filosofia 8 (1).
    La teoría de modelos se basa en el concepto de interpretación de los signos matemáticos de forma que sean verdaderas ciertas fórmulas. George Peacok introdujo este concepto en 1834, como parte del debate sobre la manera de extender la matemática de los números enteros y naturales al análisis de los números reales y complejos. Él observaba la matemática «desde fuera», pero a mediados del siglo XX las ideas que él introdujo reaparecieron en una colección de teoremas matemáticos que constituyeron la (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • What is categorical structuralism?Geoffrey Hellman - 2006 - In Johan van Benthem, Gerhard Heinzman, M. Rebushi & H. Visser (eds.), The Age of Alternative Logics: Assessing Philosophy of Logic and Mathematics Today. Dordrecht, Netherland: Springer. pp. 151--161.
    Download  
     
    Export citation  
     
    Bookmark   5 citations