Switch to: References

Add citations

You must login to add citations.
  1. Non-deductive Logic in Mathematics: The Probability of Conjectures.James Franklin - 2013 - In Andrew Aberdein & Ian J. Dove (eds.), The Argument of Mathematics. Dordrecht, Netherland: Springer. pp. 11--29.
    Mathematicians often speak of conjectures, yet unproved, as probable or well-confirmed by evidence. The Riemann Hypothesis, for example, is widely believed to be almost certainly true. There seems no initial reason to distinguish such probability from the same notion in empirical science. Yet it is hard to see how there could be probabilistic relations between the necessary truths of pure mathematics. The existence of such logical relations, short of certainty, is defended using the theory of logical probability (or objective Bayesianism (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Presences of the Infinite: J.M. Coetzee and Mathematics.Peter Johnston - 2013 - Dissertation, Royal Holloway, University of London
    This thesis articulates the resonances between J. M. Coetzee's lifelong engagement with mathematics and his practice as a novelist, critic, and poet. Though the critical discourse surrounding Coetzee's literary work continues to flourish, and though the basic details of his background in mathematics are now widely acknowledged, his inheritance from that background has not yet been the subject of a comprehensive and mathematically- literate account. In providing such an account, I propose that these two strands of his intellectual trajectory not (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Cognitive Approach to Benacerraf's Dilemma.Luke Jerzykiewicz - 2009 - Dissertation, University of Western Ontario
    One of the important challenges in the philosophy of mathematics is to account for the semantics of sentences that express mathematical propositions while simultaneously explaining our access to their contents. This is Benacerraf’s Dilemma. In this dissertation, I argue that cognitive science furnishes new tools by means of which we can make progress on this problem. The foundation of the solution, I argue, must be an ontologically realist, albeit non-platonist, conception of mathematical reality. The semantic portion of the problem can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Numbers and Everything.Gonçalo Santos - 2013 - Philosophia Mathematica 21 (3):297-308.
    I begin by drawing a parallel between the intuitionistic understanding of quantification over all natural numbers and the generality relativist understanding of quantification over absolutely everything. I then argue that adoption of an intuitionistic reading of relativism not only provides an immediate reply to the absolutist's charge of incoherence but it also throws a new light on the debates surrounding absolute generality.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • What are groups?Katherine Ritchie - 2013 - Philosophical Studies 166 (2):257-272.
    In this paper I argue for a view of groups, things like teams, committees, clubs and courts. I begin by examining features all groups seem to share. I formulate a list of six features of groups that serve as criteria any adequate theory of groups must capture. Next, I examine four of the most prominent views of groups currently on offer—that groups are non-singular pluralities, fusions, aggregates and sets. I argue that each fails to capture one or more of the (...)
    Download  
     
    Export citation  
     
    Bookmark   79 citations  
  • Foundations for Mathematical Structuralism.Uri Nodelman & Edward N. Zalta - 2014 - Mind 123 (489):39-78.
    We investigate the form of mathematical structuralism that acknowledges the existence of structures and their distinctive structural elements. This form of structuralism has been subject to criticisms recently, and our view is that the problems raised are resolved by proper, mathematics-free theoretical foundations. Starting with an axiomatic theory of abstract objects, we identify a mathematical structure as an abstract object encoding the truths of a mathematical theory. From such foundations, we derive consequences that address the main questions and issues that (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Two Unpublished Contributions by Alfred Tarski.Francisco Rodriguez-Consuegra - 2007 - History and Philosophy of Logic 28 (3):257-264.
    Two unpublished contributions to meetings can be found in the Alfred Tarski Papers, at the University of California, Berkeley. The meetings took place in 1965, in Chicago and London, respectively....
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (2 other versions)Nominalism.Zoltan Szabo - 2003 - In Michael J. Loux & Dean W. Zimmerman (eds.), The Oxford handbook of metaphysics. New York: Oxford University Press.
    …entities? 2. How to be a nominalist 2.1. “Speak with the vulgar …” 2.2. “…think with the learned” 3. Arguments for nominalism 3.1. Intelligibility, physicalism, and economy 3.2. Causal..
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Fictionalism in the philosophy of mathematics.Mark Balaguer - 2008 - Stanford Encyclopedia of Philosophy.
    Mathematical fictionalism (or as I'll call it, fictionalism) is best thought of as a reaction to mathematical platonism. Platonism is the view that (a) there exist abstract mathematical objects (i.e., nonspatiotemporal mathematical objects), and (b) our mathematical sentences and theories provide true descriptions of such objects. So, for instance, on the platonist view, the sentence ‘3 is prime’ provides a straightforward description of a certain object—namely, the number 3—in much the same way that the sentence ‘Mars is red’ provides a (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • A Taxonomy for Set-Theoretic Potentialism.Davide Sutto - 2024 - Philosophia Mathematica:1-28.
    Set-theoretic potentialism is one of the most lively trends in the philosophy of mathematics. Modal accounts of sets have been developed in two different ways. The first, initiated by Charles Parsons, focuses on sets as objects. The second, dating back to Hilary Putnam and Geoffrey Hellman, investigates set-theoretic structures. The paper identifies two strands of open issues, technical and conceptual, to clarify these two different, yet often conflated, views and categorize the potentialist approaches that have emerged in the contemporary debate. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Putnam, Context, and Ontology.Steven Gross - 2004 - Canadian Journal of Philosophy 34 (4):507 - 553.
    When a debate seems intractable, with little agreement as to how one might proceed towards a resolution, it is understandable that philosophers should consider whether something might be amiss with the debate itself. Famously in the last century, philosophers of various stripes explored in various ways the possibility that at least certain philosophical debates are in some manner deficient in sense. Such moves are no longer so much in vogue. For one thing, the particular ways they have been made have (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (1 other version)Abstract objects.Gideon Rosen - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   93 citations  
  • Philosophy of mathematics.Leon Horsten - 2008 - Stanford Encyclopedia of Philosophy.
    If mathematics is regarded as a science, then the philosophy of mathematics can be regarded as a branch of the philosophy of science, next to disciplines such as the philosophy of physics and the philosophy of biology. However, because of its subject matter, the philosophy of mathematics occupies a special place in the philosophy of science. Whereas the natural sciences investigate entities that are located in space and time, it is not at all obvious that this is also the case (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Epistemic truth and excluded middle.Cesare Cozzo - 1998 - Theoria 64 (2-3):243-282.
    Can an epistemic conception of truth and an endorsement of the excluded middle (together with other principles of classical logic abandoned by the intuitionists) cohabit in a plausible philosophical view? In PART I I describe the general problem concerning the relation between the epistemic conception of truth and the principle of excluded middle. In PART II I give a historical overview of different attitudes regarding the problem. In PART III I sketch a possible holistic solution.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Meaning and argument. A theory of meaning centred on immediate argumental role.Cesare Cozzo - 1994 - Almqvist & Wiksell.
    This study presents and develops in detail (a new version of) the argumental conception of meaning. The two basic principles of the argumental conception of meaning are: i) To know (implicitly) the sense of a word is to know (implicitly) all the argumentation rules concerning that word; ii) To know the sense of a sentence is to know the syntactic structure of that sentence and to know the senses of the words occurring in it. The sense of a sentence is (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Operators in the paradox of the knower.Patrick Grim - 1993 - Synthese 94 (3):409 - 428.
    Predicates are term-to-sentence devices, and operators are sentence-to-sentence devices. What Kaplan and Montague's Paradox of the Knower demonstrates is that necessity and other modalities cannot be treated as predicates, consistent with arithmetic; they must be treated as operators instead. Such is the current wisdom.A number of previous pieces have challenged such a view by showing that a predicative treatment of modalities neednot raise the Paradox of the Knower. This paper attempts to challenge the current wisdom in another way as well: (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The last mathematician from Hilbert's göttingen: Saunders Mac Lane as philosopher of mathematics.Colin McLarty - 2007 - British Journal for the Philosophy of Science 58 (1):77-112.
    While Saunders Mac Lane studied for his D.Phil in Göttingen, he heard David Hilbert's weekly lectures on philosophy, talked philosophy with Hermann Weyl, and studied it with Moritz Geiger. Their philosophies and Emmy Noether's algebra all influenced his conception of category theory, which has become the working structure theory of mathematics. His practice has constantly affirmed that a proper large-scale organization for mathematics is the most efficient path to valuable specific results—while he sees that the question of which results are (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Quine, Putnam, and the ‘Quine–Putnam’ Indispensability Argument.David Liggins - 2008 - Erkenntnis 68 (1):113 - 127.
    Much recent discussion in the philosophy of mathematics has concerned the indispensability argument—an argument which aims to establish the existence of abstract mathematical objects through appealing to the role that mathematics plays in empirical science. The indispensability argument is standardly attributed to W. V. Quine and Hilary Putnam. In this paper, I show that this attribution is mistaken. Quine's argument for the existence of abstract mathematical objects differs from the argument which many philosophers of mathematics ascribe to him. Contrary to (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • On the philosophical relevance of Gödel's incompleteness theorems.Panu Raatikainen - 2005 - Revue Internationale de Philosophie 59 (4):513-534.
    A survey of more philosophical applications of Gödel's incompleteness results.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Potentialist set theory and the nominalist’s dilemma.Sharon Berry - forthcoming - Philosophical Quarterly.
    Mathematicalnominalists have argued that we can reformulate scientific theories without quantifying over mathematical objects.However, worries about the nature and meaningfulness of these nominalistic reformulations have been raised, like Burgess and Rosen’s dilemma. In this paper, I’ll review (what I take to be) a kind of emerging consensus response to this dilemma: appeal to the idea of different levels of analysis and explanation, with philosophy providing an extra layer of analysis “below” physics, much as physics does below chemistry. I’ll argue that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Why do numbers exist? A psychologist constructivist account.Markus Pantsar - forthcoming - Inquiry: An Interdisciplinary Journal of Philosophy.
    In this paper, I study the kind of questions we can ask about the existence of numbers. In addition to asking whether numbers exist, and how, I argue that there is also a third relevant question: why numbers exist. In platonist and nominalist accounts this question may not make sense, but in the psychologist account I develop, it is as well-placed as the other two questions. In fact, there are two such why-questions: the causal why-question asks what causes numbers to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Epistemological Subject(s) of Mathematics.Silvia De Toffoli - 2024 - In Bharath Sriraman (ed.), Handbook of the History and Philosophy of Mathematical Practice. Cham: Springer. pp. 2880-2904.
    Paying attention to the inner workings of mathematicians has led to a proliferation of new themes in the philosophy of mathematics. Several of these have to do with epistemology. Philosophers of mathematical practice, however, have not (yet) systematically engaged with general (analytic) epistemology. To be sure, there are some exceptions, but they are few and far between. In this chapter, I offer an explanation of why this might be the case and show how the situation could be remedied. I contend (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Deductivism in the Philosophy of Mathematics.Alexander Paseau & Fabian Pregel - 2023 - Stanford Encyclopedia of Philosophy 2023.
    Deductivism says that a mathematical sentence s should be understood as expressing the claim that s deductively follows from appropriate axioms. For instance, deductivists might construe “2+2=4” as “the sentence ‘2+2=4’ deductively follows from the axioms of arithmetic”. Deductivism promises a number of benefits. It captures the fairly common idea that mathematics is about “what can be deduced from the axioms”; it avoids an ontology of abstract mathematical objects; and it maintains that our access to mathematical truths requires nothing beyond (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The iterative conception of function and the iterative conception of set.Tim Button - 2023 - In Carolin Antos, Neil Barton & Giorgio Venturi (eds.), The Palgrave Companion to the Philosophy of Set Theory. Palgrave.
    Hilary Putnam once suggested that “the actual existence of sets as ‘intangible objects’ suffers… from a generalization of a problem first pointed out by Paul Benacerraf… are sets a kind of function or are functions a sort of set?” Sadly, he did not elaborate; my aim, here, is to do so on his behalf. There are well-known methods for treating sets as functions and functions as sets. But these do not raise any obvious philosophical or foundational puzzles. For that, we (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Weyl and Two Kinds of Potential Domains.Laura Crosilla & Øystein Linnebo - forthcoming - Noûs.
    According to Weyl, “‘inexhaustibility’ is essential to the infinite”. However, he distinguishes two kinds of inexhaustible, or merely potential, domains: those that are “extensionally determinate” and those that are not. This article clarifies Weyl's distinction and explains its enduring logical and philosophical significance. The distinction sheds lights on the contemporary debate about potentialism, which in turn affords a deeper understanding of Weyl.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Mathematical Pluralism.Edward N. Zalta - 2024 - Noûs 58 (2):306-332.
    Mathematical pluralism can take one of three forms: (1) every consistent mathematical theory consists of truths about its own domain of individuals and relations; (2) every mathematical theory, consistent or inconsistent, consists of truths about its own (possibly uninteresting) domain of individuals and relations; and (3) the principal philosophies of mathematics are each based upon an insight or truth about the nature of mathematics that can be validated. (1) includes the multiverse approach to set theory. (2) helps us to understand (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Sharon Berry.*A Logical Foundation for Potentialist Set Theory.Chris Scambler - 2023 - Philosophia Mathematica 31 (2):277-282.
    This book offers a foundation for mathematics grounded in a collection of axioms for logical possibility in a first-order language. The offered foundation is ar.
    Download  
     
    Export citation  
     
    Bookmark  
  • El Tractatus al rescate de Principia Mathematica: Ramsey y los fundamentos logicistas de las matemáticas.Emilio Méndez Pinto - 2022 - Critica 54 (161):43-69.
    Mi objetivo es discutir las principales dificultades que Frank P. Ramsey encontró en Principia Mathematica y la solución que, vía el Tractatus Logico-Philosophicus, propuso al respecto. Sostengo que las principales dificultades que Ramsey encontró en Principia Mathematica están, todas, relacionadas con que Russell y Whitehead desatendieron la forma lógica de las proposiciones matemáticas, las cuales, según Ramsey, deben ser tautológicas.
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematics and Metaphilosophy.Justin Clarke-Doane - 2022 - Cambridge: Cambridge University Press.
    This book discusses the problem of mathematical knowledge, and its broader philosophical ramifications. It argues that the problem of explaining the (defeasible) justification of our mathematical beliefs (‘the justificatory challenge’), arises insofar as disagreement over axioms bottoms out in disagreement over intuitions. And it argues that the problem of explaining their reliability (‘the reliability challenge’), arises to the extent that we could have easily had different beliefs. The book shows that mathematical facts are not, in general, empirically accessible, contra Quine, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Objectivity in Mathematics, Without Mathematical Objects†.Markus Pantsar - 2021 - Philosophia Mathematica 29 (3):318-352.
    I identify two reasons for believing in the objectivity of mathematical knowledge: apparent objectivity and applications in science. Focusing on arithmetic, I analyze platonism and cognitive nativism in terms of explaining these two reasons. After establishing that both theories run into difficulties, I present an alternative epistemological account that combines the theoretical frameworks of enculturation and cumulative cultural evolution. I show that this account can explain why arithmetical knowledge appears to be objective and has scientific applications. Finally, I will argue (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Level Theory, Part 2: Axiomatizing the Bare Idea of a Potential Hierarchy.Tim Button - 2021 - Bulletin of Symbolic Logic 27 (4):461-484.
    Potentialists think that the concept of set is importantly modal. Using tensed language as an heuristic, the following bar-bones story introduces the idea of a potential hierarchy of sets: 'Always: for any sets that existed, there is a set whose members are exactly those sets; there are no other sets.' Surprisingly, this story already guarantees well-foundedness and persistence. Moreover, if we assume that time is linear, the ensuing modal set theory is almost definitionally equivalent with non-modal set theories; specifically, with (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mathematical anti-realism and explanatory structure.Bruno Whittle - 2021 - Synthese 199 (3-4):6203-6217.
    Plausibly, mathematical claims are true, but the fundamental furniture of the world does not include mathematical objects. This can be made sense of by providing mathematical claims with paraphrases, which make clear how the truth of such claims does not require the fundamental existence of mathematical objects. This paper explores the consequences of this type of position for explanatory structure. There is an apparently straightforward relationship between this sort of structure, and the logical sort: i.e. logically complex claims are explained (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Modal and Hyperintensional Cognitivism and Modal and Hyperintensional Expressivism.David Elohim - manuscript
    This paper aims to provide a mathematically tractable background against which to model both modal and hyperintensional cognitivism and modal and hyperintensional expressivism. I argue that epistemic modal algebras, endowed with a hyperintensional, topic-sensitive epistemic two-dimensional truthmaker semantics, comprise a materially adequate fragment of the language of thought. I demonstrate, then, how modal expressivism can be regimented by modal coalgebraic automata, to which the above epistemic modal algebras are categorically dual. I examine five methods for modeling the dynamics of conceptual (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Aspects of the Real Numbers: Putnam, Wittgenstein, and Nonextensionalism.Juliet Floyd - 2020 - The Monist 103 (4):427-441.
    I defend Putnam’s modal structuralist view of mathematics but reject his claims that Wittgenstein’s remarks on Dedekind, Cantor, and set theory are verificationist. Putnam’s “realistic realism” showcases the plasticity of our “fitting” words to the world. The applications of this—in philosophy of language, mind, logic, and philosophy of computation—are robust. I defend Wittgenstein’s nonextensionalist understanding of the real numbers, showing how it fits Putnam’s view. Nonextensionalism and extensionalism about the real numbers are mathematically, philosophically, and logically robust, but the two (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Quantifier Variance, Mathematicians’ Freedom and the Revenge of Quinean Indispensability Worries.Sharon Berry - 2022 - Erkenntnis 87 (5):2201-2218.
    Invoking a form of quantifier variance promises to let us explain mathematicians’ freedom to introduce new kinds of mathematical objects in a way that avoids some problems for standard platonist and nominalist views. In this paper I’ll note that, despite traditional associations between quantifier variance and Carnapian rejection of metaphysics, Siderian realists about metaphysics can naturally be quantifier variantists. Unfortunately a variant on the Quinean indispensability argument concerning grounding seems to pose a problem for philosophers who accept this hybrid. However (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Shadows of Syntax: Revitalizing Logical and Mathematical Conventionalism.Jared Warren - 2020 - New York, USA: Oxford University Press.
    What is the source of logical and mathematical truth? This book revitalizes conventionalism as an answer to this question. Conventionalism takes logical and mathematical truth to have their source in linguistic conventions. This was an extremely popular view in the early 20th century, but it was never worked out in detail and is now almost universally rejected in mainstream philosophical circles. Shadows of Syntax is the first book-length treatment and defense of a combined conventionalist theory of logic and mathematics. It (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • The Potential in Frege’s Theorem.Will Stafford - 2023 - Review of Symbolic Logic 16 (2):553-577.
    Is a logicist bound to the claim that as a matter of analytic truth there is an actual infinity of objects? If Hume’s Principle is analytic then in the standard setting the answer appears to be yes. Hodes’s work pointed to a way out by offering a modal picture in which only a potential infinity was posited. However, this project was abandoned due to apparent failures of cross-world predication. We re-explore this idea and discover that in the setting of the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Many and the One: A Philosophical Study of Plural Logic.Salvatore Florio & Øystein Linnebo - 2021 - Oxford, England: Oxford University Press.
    Plural expressions found in natural languages allow us to talk about many objects simultaneously. Plural logic — a logical system that takes plurals at face value — has seen a surge of interest in recent years. This book explores its broader significance for philosophy, logic, and linguistics. What can plural logic do for us? Are the bold claims made on its behalf correct? After introducing plural logic and its main applications, the book provides a systematic analysis of the relation between (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Syntax-Semantics Interaction in Mathematics.Michael Heller - 2018 - Studia Semiotyczne 32 (2):87-105.
    Mathematical tools of category theory are employed to study the syntax-semantics problem in the philosophy of mathematics. Every category has its internal logic, and if this logic is sufficiently rich, a given category provides semantics for a certain formal theory and, vice versa, for each formal theory one can construct a category, providing a semantics for it. There exists a pair of adjoint functors, Lang and Syn, between a category and a category of theories. These functors describe, in a formal (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Review of: Hilary Putnam on Logic and Mathematics, by Geoffrey Hellman and Roy T. Cook (eds.). [REVIEW]Tim Button - 2019 - Mind 129 (516):1327-1337.
    Putnam’s most famous contribution to mathematical logic was his role in investigating Hilbert’s Tenth Problem; Putnam is the ‘P’ in the MRDP Theorem. This volume, though, focusses mostly on Putnam’s work on the philosophy of logic and mathematics. It is a somewhat bumpy ride. Of the twelve papers, two scarcely mention Putnam. Three others focus primarily on Putnam’s ‘Mathematics without foundations’ (1967), but with no interplay between them. The remaining seven papers apparently tackle unrelated themes. Some of this disjointedness would (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Maddy On The Multiverse.Claudio Ternullo - 2019 - In Stefania Centrone, Deborah Kant & Deniz Sarikaya (eds.), Reflections on the Foundations of Mathematics: Univalent Foundations, Set Theory and General Thoughts. Springer Verlag. pp. 43-78.
    Penelope Maddy has recently addressed the set-theoretic multiverse, and expressed reservations on its status and merits ([Maddy, 2017]). The purpose of the paper is to examine her concerns, by using the interpretative framework of set-theoretic naturalism. I first distinguish three main forms of 'multiversism', and then I proceed to analyse Maddy's concerns. Among other things, I take into account salient aspects of multiverse-related mathematics , in particular, research programmes in set theory for which the use of the multiverse seems to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The modal logic of set-theoretic potentialism and the potentialist maximality principles.Joel David Hamkins & Øystein Linnebo - 2022 - Review of Symbolic Logic 15 (1):1-35.
    We analyze the precise modal commitments of several natural varieties of set-theoretic potentialism, using tools we develop for a general model-theoretic account of potentialism, building on those of Hamkins, Leibman and Löwe [14], including the use of buttons, switches, dials and ratchets. Among the potentialist conceptions we consider are: rank potentialism, Grothendieck–Zermelo potentialism, transitive-set potentialism, forcing potentialism, countable-transitive-model potentialism, countable-model potentialism, and others. In each case, we identify lower bounds for the modal validities, which are generally either S4.2 or S4.3, (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Philosophy of Mathematical Practice — Motivations, Themes and Prospects†.Jessica Carter - 2019 - Philosophia Mathematica 27 (1):1-32.
    A number of examples of studies from the field ‘The Philosophy of Mathematical Practice’ (PMP) are given. To characterise this new field, three different strands are identified: an agent-based, a historical, and an epistemological PMP. These differ in how they understand ‘practice’ and which assumptions lie at the core of their investigations. In the last part a general framework, capturing some overall structure of the field, is proposed.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Understanding the Progress of Science.C. D. McCoy - 2022 - In Insa Lawler, Kareem Khalifa & Elay Shech (eds.), Scientific Understanding and Representation: Modeling in the Physical Sciences. New York, NY: Routledge. pp. 353-369.
    Philosophical debates on how to account for the progress of science have traditionally divided along the realism-anti-realism axis. Relatively recent developments in epistemology, however, have opened up a new knowledge-understanding axis to the debate. This chapter presents a novel understanding-based account of scientific progress that takes its motivation from problem-solving practices in science. Problem-solving is characterized as a means of measuring degree of understanding, which is argued to be the principal epistemic (or cognitive) aim of science, over and against knowledge. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Conversational Exculpature.Daniel Hoek - 2018 - Philosophical Review 127 (2):151-196.
    Conversational exculpature is a pragmatic process whereby information is subtracted from, rather than added to, what the speaker literally says. This pragmatic content subtraction explains why we can say “Rob is six feet tall” without implying that Rob is between 5'0.99" and 6'0.01" tall, and why we can say “Ellen has a hat like the one Sherlock Holmes always wears” without implying Holmes exists or has a hat. This article presents a simple formalism for understanding this pragmatic mechanism, specifying how, (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • (1 other version)The Necessity of Mathematics.Juhani Yli‐Vakkuri & John Hawthorne - 2018 - Noûs 52 (3):549-577.
    Some have argued for a division of epistemic labor in which mathematicians supply truths and philosophers supply their necessity. We argue that this is wrong: mathematics is committed to its own necessity. Counterfactuals play a starring role.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Actual and Potential Infinity.Øystein Linnebo & Stewart Shapiro - 2017 - Noûs 53 (1):160-191.
    The notion of potential infinity dominated in mathematical thinking about infinity from Aristotle until Cantor. The coherence and philosophical importance of the notion are defended. Particular attention is paid to the question of whether potential infinity is compatible with classical logic or requires a weaker logic, perhaps intuitionistic.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Modal Structuralism Simplified.Sharon Berry - 2018 - Canadian Journal of Philosophy 48 (2):200-222.
    Since Benacerraf’s ‘What Numbers Could Not Be, ’ there has been a growing interest in mathematical structuralism. An influential form of mathematical structuralism, modal structuralism, uses logical possibility and second order logic to provide paraphrases of mathematical statements which don’t quantify over mathematical objects. These modal structuralist paraphrases are a useful tool for nominalists and realists alike. But their use of second order logic and quantification into the logical possibility operator raises concerns. In this paper, I show that the work (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Hyperintensional Foundations of Mathematical Platonism.David Elohim - manuscript
    This paper aims to provide hyperintensional foundations for mathematical platonism. I examine Hale and Wright's (2009) objections to the merits and need, in the defense of mathematical platonism and its epistemology, of the thesis of Necessitism. In response to Hale and Wright's objections to the role of epistemic and metaphysical modalities in providing justification for both the truth of abstraction principles and the success of mathematical predicate reference, I examine the Necessitist commitments of the abundant conception of properties endorsed by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Hyperintensional Category Theory and Indefinite Extensibility.David Elohim - manuscript
    This essay endeavors to define the concept of indefinite extensibility in the setting of category theory. I argue that the generative property of indefinite extensibility for set-theoretic truths in category theory is identifiable with the Grothendieck Universe Axiom and the elementary embeddings in Vopenka's principle. The interaction between the interpretational and objective modalities of indefinite extensibility is defined via the epistemic interpretation of two-dimensional semantics. The semantics can be defined intensionally or hyperintensionally. By characterizing the modal profile of $\Omega$-logical validity, (...)
    Download  
     
    Export citation  
     
    Bookmark