Switch to: Citations

Add references

You must login to add references.
  1. Wittgenstein on rules and private language.Saul A. Kripke - 1982 - Revue Philosophique de la France Et de l'Etranger 173 (4):496-499.
    Download  
     
    Export citation  
     
    Bookmark   1001 citations  
  • (2 other versions)Truth and Other Enigmas.Michael Dummett - 1978 - British Journal for the Philosophy of Science 32 (4):419-425.
    Download  
     
    Export citation  
     
    Bookmark   334 citations  
  • Plurals and modals.Øystein Linnebo - 2016 - Canadian Journal of Philosophy 46 (4-5):654-676.
    Consider one of several things. Is the one thing necessarily one of the several? This key question in the modal logic of plurals is clarified. Some defenses of an affirmative answer are developed and compared. Various remarks are made about the broader philosophical significance of the question.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • The potential hierarchy of sets.Øystein Linnebo - 2013 - Review of Symbolic Logic 6 (2):205-228.
    Some reasons to regard the cumulative hierarchy of sets as potential rather than actual are discussed. Motivated by this, a modal set theory is developed which encapsulates this potentialist conception. The resulting theory is equi-interpretable with Zermelo Fraenkel set theory but sheds new light on the set-theoretic paradoxes and the foundations of set theory.
    Download  
     
    Export citation  
     
    Bookmark   103 citations  
  • Numbers and Everything.Gonçalo Santos - 2013 - Philosophia Mathematica 21 (3):297-308.
    I begin by drawing a parallel between the intuitionistic understanding of quantification over all natural numbers and the generality relativist understanding of quantification over absolutely everything. I then argue that adoption of an intuitionistic reading of relativism not only provides an immediate reply to the absolutist's charge of incoherence but it also throws a new light on the debates surrounding absolute generality.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Iterative Conception of Set: a (Bi-)Modal Axiomatisation.J. P. Studd - 2013 - Journal of Philosophical Logic 42 (5):1-29.
    The use of tensed language and the metaphor of set ‘formation’ found in informal descriptions of the iterative conception of set are seldom taken at all seriously. Both are eliminated in the nonmodal stage theories that formalise this account. To avoid the paradoxes, such accounts deny the Maximality thesis, the compelling thesis that any sets can form a set. This paper seeks to save the Maximality thesis by taking the tense more seriously than has been customary (although not literally). A (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • On some difficulties in the theory of transfinite numbers and order types.Bertrand Russell - 1905 - Proceedings of the London Mathematical Society 4 (14):29-53.
    Download  
     
    Export citation  
     
    Bookmark   95 citations  
  • (1 other version)Frege.Michael Dummett - 1981 - Cambridge: Harvard University Press.
    In this work Dummett discusses, section by section, Frege's masterpiece The Foundations of Arithmetic and Frege's treatment of real numbers in the second volume ...
    Download  
     
    Export citation  
     
    Bookmark   235 citations  
  • Sets, properties, and unrestricted quantification.Øystein Linnebo - 2006 - In Agustín Rayo & Gabriel Uzquiano (eds.), Absolute generality. New York: Oxford University Press. pp. 149--178.
    Call a quantifier unrestricted if it ranges over absolutely all things: not just over all physical things or all things relevant to some particular utterance or discourse but over absolutely everything there is. Prima facie, unrestricted quantification seems to be perfectly coherent. For such quantification appears to be involved in a variety of claims that all normal human beings are capable of understanding. For instance, some basic logical and mathematical truths appear to involve unrestricted quantification, such as the truth that (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Relatively Unrestricted Quantification.Kit Fine - 2006 - In Agustín Rayo & Gabriel Uzquiano (eds.), Absolute generality. New York: Oxford University Press. pp. 20-44.
    There are four broad grounds upon which the intelligibility of quantification over absolutely everything has been questioned—one based upon the existence of semantic indeterminacy, another on the relativity of ontology to a conceptual scheme, a third upon the necessity of sortal restriction, and the last upon the possibility of indefinite extendibility. The argument from semantic indeterminacy derives from general philosophical considerations concerning our understanding of language. For the Skolem–Lowenheim Theorem appears to show that an understanding of quanti- fication over absolutely (...)
    Download  
     
    Export citation  
     
    Bookmark   86 citations  
  • Quantification and realism.Michael Glanzberg - 2004 - Philosophy and Phenomenological Research 69 (3):541–572.
    This paper argues for the thesis that, roughly put, it is impossible to talk about absolutely everything. To put the thesis more precisely, there is a particular sense in which, as a matter of semantics, quantifiers always range over domains that are in principle extensible, and so cannot count as really being ‘absolutely everything’. The paper presents an argument for this thesis, and considers some important objections to the argument and to the formulation of the thesis. The paper also offers (...)
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • The structure of the paradoxes of self-reference.Graham Priest - 1994 - Mind 103 (409):25-34.
    Download  
     
    Export citation  
     
    Bookmark   68 citations  
  • E pluribus unum: Plural logic and set theory.John P. Burgess - 2004 - Philosophia Mathematica 12 (3):193-221.
    A new axiomatization of set theory, to be called Bernays-Boolos set theory, is introduced. Its background logic is the plural logic of Boolos, and its only positive set-theoretic existence axiom is a reflection principle of Bernays. It is a very simple system of axioms sufficient to obtain the usual axioms of ZFC, plus some large cardinals, and to reduce every question of plural logic to a question of set theory.
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • Prolegomenon To Any Future Neo‐Logicist Set Theory: Abstraction And Indefinite Extensibility.Stewart Shapiro - 2003 - British Journal for the Philosophy of Science 54 (1):59-91.
    The purpose of this paper is to assess the prospects for a neo‐logicist development of set theory based on a restriction of Frege's Basic Law V, which we call (RV): ∀P∀Q[Ext(P) = Ext(Q) ≡ [(BAD(P) & BAD(Q)) ∨ ∀x(Px ≡ Qx)]] BAD is taken as a primitive property of properties. We explore the features it must have for (RV) to sanction the various strong axioms of Zermelo–Fraenkel set theory. The primary interpretation is where ‘BAD’ is Dummett's ‘indefinitely extensible’.1 Background: what (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • (2 other versions)Truth and Other Enigmas.Michael Dummett - 1980 - Revue Philosophique de la France Et de l'Etranger 170 (1):62-65.
    Download  
     
    Export citation  
     
    Bookmark   313 citations  
  • (1 other version)Mathematical Logic as Based on the Theory of Types.Bertrand Russell - 1908 - American Journal of Mathematics 30 (3):222-262.
    Download  
     
    Export citation  
     
    Bookmark   282 citations  
  • Mathematics in Philosophy: Selected Essays.Charles Parsons - 1985 - British Journal for the Philosophy of Science 36 (4):437-457.
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • From Kant to Hilbert: a source book in the foundations of mathematics.William Bragg Ewald (ed.) - 1996 - New York: Oxford University Press.
    This massive two-volume reference presents a comprehensive selection of the most important works on the foundations of mathematics. While the volumes include important forerunners like Berkeley, MacLaurin, and D'Alembert, as well as such followers as Hilbert and Bourbaki, their emphasis is on the mathematical and philosophical developments of the nineteenth century. Besides reproducing reliable English translations of classics works by Bolzano, Riemann, Hamilton, Dedekind, and Poincare, William Ewald also includes selections from Gauss, Cantor, Kronecker, and Zermelo, all translated here for (...)
    Download  
     
    Export citation  
     
    Bookmark   168 citations  
  • (1 other version)Frege: Philosophy of Mathematics.Michael DUMMETT - 1991 - Philosophy 68 (265):405-411.
    Download  
     
    Export citation  
     
    Bookmark   222 citations  
  • Indefiniteness in semi-intuitionistic set theories: On a conjecture of Feferman.Michael Rathjen - 2016 - Journal of Symbolic Logic 81 (2):742-754.
    The paper proves a conjecture of Solomon Feferman concerning the indefiniteness of the continuum hypothesis relative to a semi-intuitionistic set theory.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Frege: Philosophy of Mathematics. [REVIEW]Richard Heck - 1993 - Philosophical Quarterly 43 (171):223-233.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • (1 other version)Wittgenstein on Rules and Private Language.Paul Horwich - 1984 - Philosophy of Science 51 (1):163-171.
    Discussion of Wittgenstein's philosophy has suffered from a scarcity of commentators who understand his work well enough to explain it in their own words. Apart from certain notable exceptions, all too many advocates and critics alike have tended merely to repeat slogans, with approval or ridicule as the case may be. The result has been an unusual degree of polarization and acrimony—some philosophers abandoning normal critical standards, falling under the spell and becoming fanatical supporters; and others taking an equally extreme (...)
    Download  
     
    Export citation  
     
    Bookmark   379 citations  
  • (1 other version)Mathematics in Philosophy.Charles Parsons - 1987 - Revue Philosophique de la France Et de l'Etranger 177 (1):88-90.
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • Philosophy of mathematics, selected readings.Paul Benacerraf & Hilary Putnam - 1966 - Revue Philosophique de la France Et de l'Etranger 156:501-502.
    Download  
     
    Export citation  
     
    Bookmark   110 citations  
  • (2 other versions)Truth and Other Enigmas.Michael Dummett - 1978 - Philosophical Quarterly 31 (122):47-67.
    Download  
     
    Export citation  
     
    Bookmark   323 citations  
  • (1 other version)Logic, Logic and Logic.George Boolos & Richard C. Jeffrey - 1998 - Studia Logica 66 (3):428-432.
    Download  
     
    Export citation  
     
    Bookmark   168 citations  
  • Sets and classes.Charles Parsons - 1974 - Noûs 8 (1):1-12.
    Download  
     
    Export citation  
     
    Bookmark   60 citations  
  • (2 other versions)Michael Dummett, Frege: Philosophy of Language. [REVIEW]Hidé Ishiguro - 1974 - Philosophy 49 (190):438-442.
    Download  
     
    Export citation  
     
    Bookmark   507 citations  
  • Hazy Totalities and Indefinitely Extensible Concepts.Alex Oliver - 1998 - Grazer Philosophische Studien 55 (1):25-50.
    Dummctt argues that classical quantification is illegitimate when the domain is given as the objects which fall under an indefinitely extensible concept, since in such cases the objects are not the required definite totality. The chief problem in understanding this complex argument is the crucial but unexplained phrase 'definite totality' and the associated claim that it follows from the intuitive notion of set that the objects over which a classical quantifier ranges form a set. 'Definite totality' is best understood as (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Frege: Philosophy of Mathematics. [REVIEW]Charles Parsons - 1996 - Philosophical Review 105 (4):540.
    This work is the long awaited sequel to the author’s classic Frege: Philosophy of Language. But it is not exactly what the author originally planned. He tells us that when he resumed work on the book in the summer of 1989, after a long interruption, he decided to start afresh. The resulting work followed a different plan from the original drafts. The reader does not know what was lost by their abandonment, but clearly much was gained: The present work may (...)
    Download  
     
    Export citation  
     
    Bookmark   107 citations  
  • Reply to Sullivan, P.M. Dummett - 2007 - In R. E. Auxier & L. E. Hahn (eds.), The Philosophy of Michael Dummett. Open Court. pp. 786--799.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Mathematics in Philosophy.Charles Parsons - 1986 - Philosophy of Science 53 (4):588-606.
    Download  
     
    Export citation  
     
    Bookmark   54 citations  
  • Dummett on Frege. [REVIEW]Leslie Stevenson - 1974 - Philosophical Quarterly 24 (97):349-359.
    Download  
     
    Export citation  
     
    Bookmark   235 citations