Switch to: References

Add citations

You must login to add citations.
  1. Conceptions of truth in intuitionism.Panu Raatikainen - 2004 - History and Philosophy of Logic 25 (2):131--45.
    Intuitionism’s disagreement with classical logic is standardly based on its specific understanding of truth. But different intuitionists have actually explicated the notion of truth in fundamentally different ways. These are considered systematically and separately, and evaluated critically. It is argued that each account faces difficult problems. They all either have implausible consequences or are viciously circular.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Logical constants.John MacFarlane - 2008 - Mind.
    Logic is usually thought to concern itself only with features that sentences and arguments possess in virtue of their logical structures or forms. The logical form of a sentence or argument is determined by its syntactic or semantic structure and by the placement of certain expressions called “logical constants.”[1] Thus, for example, the sentences Every boy loves some girl. and Some boy loves every girl. are thought to differ in logical form, even though they share a common syntactic and semantic (...)
    Download  
     
    Export citation  
     
    Bookmark   63 citations  
  • Category theory and the foundations of mathematics: Philosophical excavations.Jean-Pierre Marquis - 1995 - Synthese 103 (3):421 - 447.
    The aim of this paper is to clarify the role of category theory in the foundations of mathematics. There is a good deal of confusion surrounding this issue. A standard philosophical strategy in the face of a situation of this kind is to draw various distinctions and in this way show that the confusion rests on divergent conceptions of what the foundations of mathematics ought to be. This is the strategy adopted in the present paper. It is divided into 5 (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Plural quantification exposed.Øystein Linnebo - 2003 - Noûs 37 (1):71–92.
    This paper criticizes George Boolos's famous use of plural quantification to argue that monadic second-order logic is pure logic. I deny that plural quantification qualifies as pure logic and express serious misgivings about its alleged ontological innocence. My argument is based on an examination of what is involved in our understanding of the impredicative plural comprehension schema.
    Download  
     
    Export citation  
     
    Bookmark   70 citations  
  • MacFarlane on relative truth.Richard G. Heck - 2006 - Philosophical Issues 16 (1):88–100.
    John MacFarlane has made relativism popular again. Focusing just on his original discussion, I argue that the data he uses to motivate the position do not, in fact, motivatie it at all. Many of the points made here have since been made, independently, by Hermann Cappelen and John Hawthorne, in their book Relativism and Monadic Truth.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Ontological commitment.Agustín Rayo - 2007 - Philosophy Compass 2 (3):428–444.
    I propose a way of thinking aboout content, and a related way of thinking about ontological commitment. (This is part of a series of four closely related papers. The other three are ‘On Specifying Truth-Conditions’, ‘An Actualist’s Guide to Quantifying In’ and ‘An Account of Possibility’.).
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • Frege, Kant, and the logic in logicism.John MacFarlane - 2002 - Philosophical Review 111 (1):25-65.
    Let me start with a well-known story. Kant held that logic and conceptual analysis alone cannot account for our knowledge of arithmetic: “however we might turn and twist our concepts, we could never, by the mere analysis of them, and without the aid of intuition, discover what is the sum [7+5]” (KrV, B16). Frege took himself to have shown that Kant was wrong about this. According to Frege’s logicist thesis, every arithmetical concept can be defined in purely logical terms, and (...)
    Download  
     
    Export citation  
     
    Bookmark   121 citations  
  • The analytic conception of truth and the foundations of arithmetic.Peter Apostoli - 2000 - Journal of Symbolic Logic 65 (1):33-102.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Immanuel Kant: Kritik der reinen Vernunft.Georg Mohr & Marcus Willaschek (eds.) - 2024 - De Gruyter.
    Der Kommentar zur Kritik der reinen Vernunft bietet eine textnahe Erschließung der zentralen Begriffe, Thesen und Argumentationsgänge von Kants Hauptwerk auf aktuellem Forschungsstand. Es ist der erste Kommentar zur KrV, der den gesamten Text in der Fassung der ersten und zweiten Auflage gleichmäßig und lückenlos berücksichtigt. Davon profitieren vor allem die „Transzendentale Dialektik“ und die „Methodenlehre“, die in früheren Gesamtkommentaren meist nicht hinreichend berücksichtigt worden sind. Die Beiträge wurden nach einheitlichen Richtlinien verfasst, wobei unterschiedliche Herangehensweisen und Interpretationsansätze zur Geltung kommen. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • El escepticismo williamsoniano sobre la utilidad epistémica de la distinción a priori/a posteriori.Emilio Méndez Pinto - 2023 - Dissertation, National Autonomous University of Mexico
    Jurado: Mario Gómez-Torrente (presidente), Miguel Ángel Fernández Vargas (vocal), Santiago Echeverri Saldarriaga (secretario). [Graduado con Mención Honorífica.].
    Download  
     
    Export citation  
     
    Bookmark  
  • Weyl and Two Kinds of Potential Domains.Laura Crosilla & Øystein Linnebo - forthcoming - Noûs.
    According to Weyl, “‘inexhaustibility’ is essential to the infinite”. However, he distinguishes two kinds of inexhaustible, or merely potential, domains: those that are “extensionally determinate” and those that are not. This article clarifies Weyl's distinction and explains its enduring logical and philosophical significance. The distinction sheds lights on the contemporary debate about potentialism, which in turn affords a deeper understanding of Weyl.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The modal logic of set-theoretic potentialism and the potentialist maximality principles.Joel David Hamkins & Øystein Linnebo - 2022 - Review of Symbolic Logic 15 (1):1-35.
    We analyze the precise modal commitments of several natural varieties of set-theoretic potentialism, using tools we develop for a general model-theoretic account of potentialism, building on those of Hamkins, Leibman and Löwe [14], including the use of buttons, switches, dials and ratchets. Among the potentialist conceptions we consider are: rank potentialism, Grothendieck–Zermelo potentialism, transitive-set potentialism, forcing potentialism, countable-transitive-model potentialism, countable-model potentialism, and others. In each case, we identify lower bounds for the modal validities, which are generally either S4.2 or S4.3, (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Dummett on Indefinite Extensibility.Øystein Linnebo - 2018 - Philosophical Issues 28 (1):196-220.
    Dummett’s notion of indefinite extensibility is influential but obscure. The notion figures centrally in an alternative Dummettian argument for intuitionistic logic and anti-realism, distinct from his more famous, meaning-theoretic arguments to the same effect. Drawing on ideas from Dummett, a precise analysis of indefinite extensibility is proposed. This analysis is used to reconstruct the poorly understood alternative argument. The plausibility of the resulting argument is assessed.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (2 other versions)The Search for New Axioms in the Hyperuniverse Programme.Claudio Ternullo & Sy-David Friedman - 2016 - In Francesca Boccuni & Andrea Sereni (eds.), Objectivity, Realism, and Proof. FilMat Studies in the Philosophy of Mathematics. Cham, Switzerland: Springer International Publishing. pp. 165-188.
    The Hyperuniverse Programme, introduced in Arrigoni and Friedman (2013), fosters the search for new set-theoretic axioms. In this paper, we present the procedure envisaged by the programme to find new axioms and the conceptual framework behind it. The procedure comes in several steps. Intrinsically motivated axioms are those statements which are suggested by the standard concept of set, i.e. the `maximal iterative concept', and the programme identi fies higher-order statements motivated by the maximal iterative concept. The satisfaction of these statements (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Classes, why and how.Thomas Schindler - 2019 - Philosophical Studies 176 (2):407-435.
    This paper presents a new approach to the class-theoretic paradoxes. In the first part of the paper, I will distinguish classes from sets, describe the function of class talk, and present several reasons for postulating type-free classes. This involves applications to the problem of unrestricted quantification, reduction of properties, natural language semantics, and the epistemology of mathematics. In the second part of the paper, I will present some axioms for type-free classes. My approach is loosely based on the Gödel–Russell idea (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Can Modalities Save Naive Set Theory?Peter Fritz, Harvey Lederman, Tiankai Liu & Dana Scott - 2018 - Review of Symbolic Logic 11 (1):21-47.
    To the memory of Prof. Grigori Mints, Stanford UniversityBorn: June 7, 1939, St. Petersburg, RussiaDied: May 29, 2014, Palo Alto, California.
    Download  
     
    Export citation  
     
    Bookmark  
  • Hyperintensional Foundations of Mathematical Platonism.David Elohim - manuscript
    This paper aims to provide hyperintensional foundations for mathematical platonism. I examine Hale and Wright's (2009) objections to the merits and need, in the defense of mathematical platonism and its epistemology, of the thesis of Necessitism. In response to Hale and Wright's objections to the role of epistemic and metaphysical modalities in providing justification for both the truth of abstraction principles and the success of mathematical predicate reference, I examine the Necessitist commitments of the abundant conception of properties endorsed by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Modality and Hyperintensionality in Mathematics.David Elohim - manuscript
    This paper aims to contribute to the analysis of the nature of mathematical modality and hyperintensionality, and to the applications of the latter to absolute decidability. Rather than countenancing the interpretational type of mathematical modality as a primitive, I argue that the interpretational type of mathematical modality is a species of epistemic modality. I argue, then, that the framework of two-dimensional semantics ought to be applied to the mathematical setting. The framework permits of a formally precise account of the priority (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Modal Logic and Hyperintensional Semantics for Gödelian Intuition.David Elohim - manuscript
    This essay aims to provide a modal logic for rational intuition. Similarly to treatments of the property of knowledge in epistemic logic, I argue that rational intuition can be codified by a modal operator governed by the modal $\mu$-calculus. Via correspondence results between fixed point modal propositional logic and the bisimulation-invariant fragment of monadic second-order logic, a precise translation can then be provided between the notion of 'intuition-of', i.e., the cognitive phenomenal properties of thoughts, and the modal operators regimenting the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Forms of Luminosity: Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - 2017 - Dissertation, Arché, University of St Andrews
    This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. David Elohim examines the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, undecidable (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Forms of Luminosity: Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - 2017
    This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. David Elohim examines the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, undecidable (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The potential hierarchy of sets.Øystein Linnebo - 2013 - Review of Symbolic Logic 6 (2):205-228.
    Some reasons to regard the cumulative hierarchy of sets as potential rather than actual are discussed. Motivated by this, a modal set theory is developed which encapsulates this potentialist conception. The resulting theory is equi-interpretable with Zermelo Fraenkel set theory but sheds new light on the set-theoretic paradoxes and the foundations of set theory.
    Download  
     
    Export citation  
     
    Bookmark   103 citations  
  • Natural Deduction for Modal Logic with a Backtracking Operator.Jonathan Payne - 2015 - Journal of Philosophical Logic 44 (3):237-258.
    Harold Hodes in [1] introduces an extension of first-order modal logic featuring a backtracking operator, and provides a possible worlds semantics, according to which the operator is a kind of device for ‘world travel’; he does not provide a proof theory. In this paper, I provide a natural deduction system for modal logic featuring this operator, and argue that the system can be motivated in terms of a reading of the backtracking operator whereby it serves to indicate modal scope. I (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Second Philosophy of Arithmetic.Penelope Maddy - 2014 - Review of Symbolic Logic 7 (2):222-249.
    This paper outlines a second-philosophical account of arithmetic that places it on a distinctive ground between those of logic and set theory.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Wittgenstein on Mathematical Identities.André Porto - 2012 - Disputatio 4 (34):755-805.
    This paper offers a new interpretation for Wittgenstein`s treatment of mathematical identities. As it is widely known, Wittgenstein`s mature philosophy of mathematics includes a general rejection of abstract objects. On the other hand, the traditional interpretation of mathematical identities involves precisely the idea of a single abstract object – usually a number –named by both sides of an equation.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Cognitive Approach to Benacerraf's Dilemma.Luke Jerzykiewicz - 2009 - Dissertation, University of Western Ontario
    One of the important challenges in the philosophy of mathematics is to account for the semantics of sentences that express mathematical propositions while simultaneously explaining our access to their contents. This is Benacerraf’s Dilemma. In this dissertation, I argue that cognitive science furnishes new tools by means of which we can make progress on this problem. The foundation of the solution, I argue, must be an ontologically realist, albeit non-platonist, conception of mathematical reality. The semantic portion of the problem can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Kant on the Content of Cognition.Clinton Tolley - 2012 - European Journal of Philosophy 20 (4):200-228.
    I present an argument for an interpretation of Kant's views on the nature of the ‘content [Inhalt]’ of ‘cognition [Erkenntnis]’. In contrast to one of the longest standing interpretations of Kant's views on cognitive content, which ascribes to Kant a straightforwardly psychologistic understanding of content, and in contrast as well to the more recently influential reading of Kant put forward by McDowell and others, according to which Kant embraces a version of Russellianism, I argue that Kant's views on this topic (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Should the logic of set theory be intuitionistic?Alexander Paseau - 2001 - Proceedings of the Aristotelian Society 101 (3):369–378.
    It is commonly assumed that classical logic is the embodiment of a realist ontology. In “Sets and Semantics”, however, Jonathan Lear challenged this assumption in the particular case of set theory, arguing that even if one is a set-theoretic Platonist, due attention to a special feature of set theory leads to the conclusion that the correct logic for it is intuitionistic. The feature of set theory Lear appeals to is the open-endedness of the concept of set. This article advances reasons (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On Specifying Truth-Conditions.Agustín Rayo - 2008 - Philosophical Review 117 (3):385-443.
    This essay is a study of ontological commitment, focused on the special case of arithmetical discourse. It tries to get clear about what would be involved in a defense of the claim that arithmetical assertions are ontologically innocent and about why ontological innocence matters. The essay proceeds by questioning traditional assumptions about the connection between the objects that are used to specify the truth-conditions of a sentence, on the one hand, and the objects whose existence is required in order for (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Truth, Pretense and the Liar Paradox.Bradley Armour-Garb & James A. Woodbridge - 2015 - In T. Achourioti, H. Galinon, J. Martínez Fernández & K. Fujimoto (eds.), Unifying the Philosophy of Truth. Dordrecht: Imprint: Springer. pp. 339-354.
    In this paper we explain our pretense account of truth-talk and apply it in a diagnosis and treatment of the Liar Paradox. We begin by assuming that some form of deflationism is the correct approach to the topic of truth. We then briefly motivate the idea that all T-deflationists should endorse a fictionalist view of truth-talk, and, after distinguishing pretense-involving fictionalism (PIF) from error- theoretic fictionalism (ETF), explain the merits of the former over the latter. After presenting the basic framework (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Consideraciones en torno a la naturaleza conjuntista de la semántica de la Teoría de Conjuntos.Sandra Lazzer - 2005 - Análisis Filosófico 25 (2):121-138.
    In this paper I discuss some issues concerning the semantics of set theory. The set-theoretical nature of the semantics of axiomatic set theory raises a problem of circularity. It is well-known that when we adopt the model-theoretic point of view in the study of mathematical theories we decide to consider primarily structures in their relationship with languages. But for the fundamental structure adopted in a set-theoretic setting, namely the collection of all sets, together with the relation of membership, we would (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Scientific Realism and the Indispensability Argument for Mathematical Realism: A Marriage Made in Hell.Jacob Busch - 2011 - International Studies in the Philosophy of Science 25 (4):307-325.
    An emphasis on explanatory contribution is central to a recent formulation of the indispensability argument for mathematical realism. Because scientific realism is argued for by means of inference to the best explanation, it has been further argued that being a scientific realist entails a commitment to IA and thus to mathematical realism. It has, however, gone largely unnoticed that the way that IBE is argued to be truth conducive involves citing successful applications of IBE and tracing this success over time. (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Did Tarski commit "Tarski's fallacy"?Gila Sher - 1996 - Journal of Symbolic Logic 61 (2):653-686.
    In his 1936 paper,On the Concept of Logical Consequence, Tarski introduced the celebrated definition oflogical consequence: “The sentenceσfollows logicallyfrom the sentences of the class Γ if and only if every model of the class Γ is also a model of the sentenceσ.” [55, p. 417] This definition, Tarski said, is based on two very basic intuitions, “essential for the proper concept of consequence” [55, p. 415] and reflecting common linguistic usage: “Consider any class Γ of sentences and a sentence which (...)
    Download  
     
    Export citation  
     
    Bookmark   70 citations  
  • Linnebo's Abstractionism and the Bad Company Problem.J. P. Studd - 2023 - Theoria 89 (3):366-392.
    In Thin Objects: An Abstractionist Account, Linnebo offers what he describes as a “simple and definitive” solution to the bad company problem facing abstractionist accounts of mathematics. “Bad” abstraction principles can be rendered “good” by taking abstraction to have a predicative character. But the resulting predicative axioms are too weak to recover substantial portions of mathematics. Linnebo pursues two quite different strategies to overcome this weakness in the case of set theory and arithmetic. I argue that neither infinitely iterated abstraction (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Framing the Epistemic Schism of Statistical Mechanics.Javier Anta - 2021 - Proceedings of the X Conference of the Spanish Society of Logic, Methodology and Philosophy of Science.
    In this talk I present the main results from Anta (2021), namely, that the theoretical division between Boltzmannian and Gibbsian statistical mechanics should be understood as a separation in the epistemic capabilities of this physical discipline. In particular, while from the Boltzmannian framework one can generate powerful explanations of thermal processes by appealing to their microdynamics, from the Gibbsian framework one can predict observable values in a computationally effective way. Finally, I argue that this statistical mechanical schism contradicts the Hempelian (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Plurals.Agustín Rayo - 2007 - Philosophy Compass 2 (3):411–427.
    Forthcoming in Philosophical Compass. I explain why plural quantifiers and predicates have been thought to be philosophically significant.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • A Modal Account of Propositions.Andy Demfree Yu - 2017 - Dialectica 71 (4):463-488.
    In this paper, I motivate a modal account of propositions on the basis of an iterative conception of propositions. As an application, I suggest that the account provides a satisfying solution to the Russell-Myhill paradox. The account is in the spirit of recently developed modal accounts of sets motivated on the basis of the iterative conception of sets.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Did Tarski commit “Tarski's fallacy”?G. Y. Sher - 1996 - Journal of Symbolic Logic 61 (2):653-686.
    In his 1936 paper,On the Concept of Logical Consequence, Tarski introduced the celebrated definition oflogical consequence: “The sentenceσfollows logicallyfrom the sentences of the class Γ if and only if every model of the class Γ is also a model of the sentenceσ.” [55, p. 417] This definition, Tarski said, is based on two very basic intuitions, “essential for the proper concept of consequence” [55, p. 415] and reflecting common linguistic usage: “Consider any class Γ of sentences and a sentence which (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Who needs mereology?Stephen Pollard - 1997 - Philosophia Mathematica 5 (1):65-70.
    This note examines the mereological component of Geoffrey Hellman's most recent version of modal structuralism. There are plausible forms of agnosticism that benefit only a little from Hellman's mereological turn.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Conceptual Analysis and Analytical Definitions in Frege.Gilead Bar-Elli - 2017 - European Journal of Philosophy 25 (4):963-984.
    Logical analysis is in Frege primarily not an analysis of a concept but of its sense. Five Fregean philosophical principles are presented as constituting a framework for a theory of logical or conceptual analysis, which I call analytical explication. These principles, scattered and sometime latent in his writings are operative in Frege's critique of other views and in his constructive development of his own view. The proposed conception of analytical explication is partially rooted in Frege's notion of analytical definition. It (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Can the new indispensability argument be saved from Euclidean rescues?Jacob Busch - 2012 - Synthese 187 (2):489-508.
    The traditional formulation of the indispensability argument for the existence of mathematical entities (IA) has been criticised due to its reliance on confirmational holism. Recently a formulation of IA that works without appeal to confirmational holism has been defended. This recent formulation is meant to be superior to the traditional formulation in virtue of it not being subject to the kind of criticism that pertains to confirmational holism. I shall argue that a proponent of the version of IA that works (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • William Tait. The provenance of pure reason. Essays on the philosophy of mathematics and on its history.Charles Parsons - 2009 - Philosophia Mathematica 17 (2):220-247.
    William Tait's standing in the philosophy of mathematics hardly needs to be argued for; for this reason the appearance of this collection is especially welcome. As noted in his Preface, the essays in this book ‘span the years 1981–2002’. The years given are evidently those of publication. One essay was not previously published in its present form, but it is a reworking of papers published during that period. The Introduction, one appendix, and some notes are new. Many of the essays (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Kant on concepts and intuitions in the mathematical sciences.Michael Friedman - 1990 - Synthese 84 (2):213 - 257.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • On adopting Kripke semantics in set theory.Luca Incurvati - 2008 - Review of Symbolic Logic 1 (1):81-96.
    Several philosophers have argued that the logic of set theory should be intuitionistic on the grounds that the open-endedness of the set concept demands the adoption of a nonclassical semantics. This paper examines to what extent adopting such a semantics has revisionary consequences for the logic of our set-theoretic reasoning. It is shown that in the context of the axioms of standard set theory, an intuitionistic semantics sanctions a classical logic. A Kripke semantics in the context of a weaker axiomatization (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • No Easy Road to Impredicative Definabilism.Øystein Linnebo & Sam Roberts - 2024 - Philosophia Mathematica 32 (1):21-33.
    Bob Hale has defended a new conception of properties that is broadly Fregean in two key respects. First, like Frege, Hale insists that every property can be defined by an open formula. Second, like Frege, but unlike later definabilists, Hale seeks to justify full impredicative property comprehension. The most innovative part of his defense, we think, is a “definability constraint” that can serve as an implicit definition of the domain of properties. We make this constraint formally precise and prove that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)22 Die Disziplin der reinen Vernunft, 1. Abschnitt.Peter Rohs - 2024 - In Georg Mohr & Marcus Willaschek (eds.), Immanuel Kant: Kritik der reinen Vernunft. De Gruyter. pp. 437-454.
    Download  
     
    Export citation  
     
    Bookmark  
  • Quine's Platonism and Antiplatonism.Srećko Kovač - 1999 - Synthesis Philosophica 14 (1-2):45-52.
    Quine rejects intensional Platonism and, with it, also rejects attributes (properties) as designations of predicates. He pragmatically accepts extensional Platonism, but conceives of classes as merely auxiliary entities needed to express some laws of set theory. At the elementary logical level, Quine develops an “ontologically innocent” logic of predicates. What in standard quantification theory is the work of variables is in the logic of predicates the work of a few functors that operate on predicates themselves: variables are eliminated. This “predicate (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • When does ‘everything’ mean everything ?AgustÍ Rayo - 2003 - Analysis 63 (2):100-106.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Richard Tieszen. After Gödel. Platonism and Rationalism in Mathematics and Logic.Dagfinn Føllesdal - 2016 - Philosophia Mathematica 24 (3):405-421.
    Download  
     
    Export citation  
     
    Bookmark   1 citation