Switch to: Citations

Add references

You must login to add references.
  1. Vorbemerkung.Oskar Becker - 1927 - Jahrbuch für Philosophie Und Phänomenologische Forschung 8:441.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A. Lévy and R. M. Solovay. Measurable cardinals and the continuum hypothesis. Israel journal of mathematics, vol. 5 (1967), pp. 234–248. [REVIEW]R. M. Solovay - 1970 - Journal of Symbolic Logic 34 (4):654-655.
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Set Theory: An Introduction to Independence Proofs.Kenneth Kunen - 1980 - North-Holland.
    Download  
     
    Export citation  
     
    Bookmark   169 citations  
  • Naturalism in mathematics.Penelope Maddy - 1997 - New York: Oxford University Press.
    Naturalism in Mathematics investigates how the most fundamental assumptions of mathematics can be justified. One prevalent philosophical approach to the problem--realism--is examined and rejected in favor of another approach--naturalism. Penelope Maddy defines this naturalism, explains the motivation for it, and shows how it can be successfully applied in set theory. Her clear, original treatment of this fundamental issue is informed by current work in both philosophy and mathematics, and will be accessible and enlightening to readers from both disciplines.
    Download  
     
    Export citation  
     
    Bookmark   244 citations  
  • (1 other version)Elementary embeddings and infinitary combinatorics.Kenneth Kunen - 1971 - Journal of Symbolic Logic 36 (3):407-413.
    One of the standard ways of postulating large cardinal axioms is to consider elementary embeddings,j, from the universe,V, into some transitive submodel,M. See Reinhardt–Solovay [7] for more details. Ifjis not the identity, andκis the first ordinal moved byj, thenκis a measurable cardinal. Conversely, Scott [8] showed that wheneverκis measurable, there is suchjandM. If we had assumed, in addition, that, thenκwould be theκth measurable cardinal; in general, the wider we assumeMto be, the largerκmust be.
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  • The Higher Infinite.Akihiro Kanamori - 2000 - Studia Logica 65 (3):443-446.
    Download  
     
    Export citation  
     
    Bookmark   212 citations  
  • Foundational implications of the inner model hypothesis.Tatiana Arrigoni & Sy-David Friedman - 2012 - Annals of Pure and Applied Logic 163 (10):1360-1366.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Cantor’s Absolute in Metaphysics and Mathematics.Kai Hauser - 2013 - International Philosophical Quarterly 53 (2):161-188.
    This paper explores the metaphysical roots of Cantor’s conception of absolute infinity in order to shed some light on two basic issues that also affect the mathematical theory of sets: the viability of Cantor’s distinction between sets and inconsistent multiplicities, and the intrinsic justification of strong axioms of infinity that are studied in contemporary set theory.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Set Theory. An Introduction to Independence Proofs.James E. Baumgartner & Kenneth Kunen - 1986 - Journal of Symbolic Logic 51 (2):462.
    Download  
     
    Export citation  
     
    Bookmark   150 citations  
  • The realm of the infinite.H. W. Woodin - 2011 - In Michał Heller & W. H. Woodin (eds.), Infinity: new research frontiers. New York: Cambridge University Press.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Internal consistency and the inner model hypothesis.Sy-David Friedman - 2006 - Bulletin of Symbolic Logic 12 (4):591-600.
    There are two standard ways to establish consistency in set theory. One is to prove consistency using inner models, in the way that Gödel proved the consistency of GCH using the inner model L. The other is to prove consistency using outer models, in the way that Cohen proved the consistency of the negation of CH by enlarging L to a forcing extension L[G].But we can demand more from the outer model method, and we illustrate this by examining Easton's strengthening (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • How Woodin changed his mind: new thoughts on the Continuum Hypothesis.Colin J. Rittberg - 2015 - Archive for History of Exact Sciences 69 (2):125-151.
    The Continuum Problem has inspired set theorists and philosophers since the days of Cantorian set theory. In the last 15 years, W. Hugh Woodin, a leading set theorist, has not only taken it upon himself to engage in this question, he has also changed his mind about the answer. This paper illustrates Woodin’s solutions to the problem, starting in Sect. 3 with his 1999–2004 argument that Cantor’s hypothesis about the continuum was incorrect. From 2010 onwards, Woodin presents a very different (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • In search of ultimate- L the 19th midrasha mathematicae lectures.W. Hugh Woodin - 2017 - Bulletin of Symbolic Logic 23 (1):1-109.
    We give a fairly complete account which first shows that the solution to the inner model problem for one supercompact cardinal will yield an ultimate version ofLand then shows that the various current approaches to inner model theory must be fundamentally altered to provide that solution.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Brouwer and Weyl: The Phenomenology and Mathematics of the Intuitive Continuum.Mark Atten, Dirk Dalen & Richard Tieszen - 2002 - Philosophia Mathematica 10 (2):203-226.
    Brouwer and Weyl recognized that the intuitive continuum requires a mathematical analysis of a kind that set theory is not able to provide. As an alternative, Brouwer introduced choice sequences. We first describe the features of the intuitive continuum that prompted this development, focusing in particular on the flow of internal time as described in Husserl's phenomenology. Then we look at choice sequences and their logic. Finally, we investigate the differences between Brouwer and Weyl, and argue that Weyl's conception of (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Brouwer and Weyl: The phenomenology and mathematics of the intuitive continuumt.Mark van Atten, Dirk van Dalen & Richard Tieszen - 2002 - Philosophia Mathematica 10 (2):203-226.
    Brouwer and Weyl recognized that the intuitive continuum requires a mathematical analysis of a kind that set theory is not able to provide. As an alternative, Brouwer introduced choice sequences. We first describe the features of the intuitive continuum that prompted this development, focusing in particular on the flow of internal time as described in Husserl's phenomenology. Then we look at choice sequences and their logic. Finally, we investigate the differences between Brouwer and Weyl, and argue that Weyl's conception of (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • V = L and intuitive plausibility in set theory. A case study.Tatiana Arrigoni - 2011 - Bulletin of Symbolic Logic 17 (3):337-360.
    What counts as an intuitively plausible set theoretic content (notion, axiom or theorem) has been a matter of much debate in contemporary philosophy of mathematics. In this paper I develop a critical appraisal of the issue. I analyze first R. B. Jensen's positions on the epistemic status of the axiom of constructibility. I then formulate and discuss a view of intuitiveness in set theory that assumes it to hinge basically on mathematical success. At the same time, I present accounts of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • From Accessible to Inaccessible Cardinals.H. J. Keisler & A. Tarski - 1967 - Journal of Symbolic Logic 32 (3):411-411.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Kurt Gödel, Collected Works.Solomon Feferman (ed.) - 1995 - Oxford University Press.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Does mathematics need new axioms.Solomon Feferman, Harvey M. Friedman, Penelope Maddy & John R. Steel - 1999 - Bulletin of Symbolic Logic 6 (4):401-446.
    Part of the ambiguity lies in the various points of view from which this question might be considered. The crudest di erence lies between the point of view of the working mathematician and that of the logician concerned with the foundations of mathematics. Now some of my fellow mathematical logicians might protest this distinction, since they consider themselves to be just more of those \working mathematicians". Certainly, modern logic has established itself as a very respectable branch of mathematics, and there (...)
    Download  
     
    Export citation  
     
    Bookmark   79 citations  
  • Inner models and large cardinals.Ronald Jensen - 1995 - Bulletin of Symbolic Logic 1 (4):393-407.
    In this paper, we sketch the development of two important themes of modern set theory, both of which can be regarded as growing out of work of Kurt Gödel. We begin with a review of some basic concepts and conventions of set theory.§0. The ordinal numbers were Georg Cantor's deepest contribution to mathematics. After the natural numbers 0, 1, …, n, … comes the first infinite ordinal number ω, followed by ω + 1, ω + 2, …, ω + ω, (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • (1 other version)Elementary Embeddings and Infinitary Combinatorics.Kenneth Kunen - 1971 - Journal of Symbolic Logic 39 (2):331-331.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Mathematische Existenz: Unters. zur Logik u. Ontologie mathemat. Phaenomene.Oskar Becker - 1973 - de Gruyter.
    Download  
     
    Export citation  
     
    Bookmark   17 citations