Switch to: Citations

Add references

You must login to add references.
  1. The Emergence of Probability: A Philosophical Study of Early Ideas About Probability, Induction and Statistical Inference.Ian Hacking - 1975 - Cambridge University Press.
    Historical records show that there was no real concept of probability in Europe before the mid-seventeenth century, although the use of dice and other randomizing objects was commonplace. Ian Hacking presents a philosophical critique of early ideas about probability, induction, and statistical inference and the growth of this new family of ideas in the fifteenth, sixteenth, and seventeenth centuries. Hacking invokes a wide intellectual framework involving the growth of science, economics, and the theology of the period. He argues that the (...)
    Download  
     
    Export citation  
     
    Bookmark   158 citations  
  • Modal interpretations, decoherence and measurements.Guido Bacciagaluppi & Meir Hemmo - 1996 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 27 (3):239-277.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Non-integrability and mixing in quantum systems: On the way to quantum chaos.Mario Castagnino & Olimpia Lombardi - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (3):482-513.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Part and whole in quantum mechanics.Tim Maudlin - 1998 - In Elena Castellani (ed.), Interpreting Bodies: Classical and Quantum Objects in Modern Physics. Princeton University Press. pp. 46--60.
    Download  
     
    Export citation  
     
    Bookmark   67 citations  
  • Dynamics for Modal Interpretations.Guido Bacciagaluppi & Michael Dickson - 1999 - Foundations of Physics 29 (8):1165-1201.
    An outstanding problem in so-called modal interpretations of quantum mechanics has been the specification of a dynamics for the properties introduced in such interpretations. We develop a general framework (in the context of the theory of stochastic processes) for specifying a dynamics for interpretations in this class, focusing on the modal interpretation by Vermaas and Dieks. This framework admits many empirically equivalent dynamics. We give some examples, and discuss some of the properties of one of them. This approach is applicable (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • On the structure of quantal proposition systems.Jeffrey Bub - 1994 - Foundations of Physics 24 (9):1261-1279.
    I define sublaltices of quantum propositions that can be taken as having determinate (but perhaps unknown) truth values for a given quantum state, in the sense that sufficiently many two-valued maps satisfying a Boolean homomorphism condition exist on each determinate sublattice to generate a Kolmogorov probability space for the probabilities defined by the slate. I show that these sublattices are maximal, subject to certain constraints, from which it follows easily that they are unique. I discuss the relevance of this result (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Quantum mechanics without the projection postulate.Jeffrey Bub - 1992 - Foundations of Physics 22 (5):737-754.
    I show that the quantum state ω can be interpreted as defining a probability measure on a subalgebra of the algebra of projection operators that is not fixed (as in classical statistical mechanics) but changes with ω and appropriate boundary conditions, hence with the dynamics of the theory. This subalgebra, while not embeddable into a Boolean algebra, will always admit two-valued homomorphisms, which correspond to the different possible ways in which a set of “determinate” quantities (selected by ω and the (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Quantum mechanical interaction-free measurements.Avshalom C. Elitzur & Lev Vaidman - 1993 - Foundations of Physics 23 (7):987-997.
    A novel manifestation of nonlocality of quantum mechanics is presented. It is shown that it is possible to ascertain the existence of an object in a given region of space without interacting with it. The method might have practical applications for delicate quantum experiments.
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • Understanding Quantum Mechanics.Roland Omnès - 1999 - Princeton University Press.
    Here Roland Omnès offers a clear, up-to-date guide to the conceptual framework of quantum mechanics. In an area that has provoked much philosophical debate, Omnès has achieved high recognition for his Interpretation of Quantum Mechanics (Princeton 1994), a book for specialists. Now the author has transformed his own theory into a short and readable text that enables beginning students and experienced physicists, mathematicians, and philosophers to form a comprehensive picture of the field while learning about the most recent advances. This (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Wanted Dead or Alive: Two Attempts to Solve Schrodinger's Paradox.David Albert & Barry Loewer - 1990 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1990:277-285.
    We discuss two recent attempts two solve Schrodinger's cat paradox. One is the modal interpretation developed by Kochen, Healey, Dieks, and van Fraassen. It allows for an observable which pertains to a system to possess a value even when the system is not in an eigenstate of that observable. The other is a recent theory of the collapse of the wave function due to Ghirardi, Rimini, and Weber. It posits a dynamics which has the effect of collapsing the state of (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Theory of Probability: A Critical Introductory Treatment.Bruno de Finetti - 1970 - New York: John Wiley.
    Download  
     
    Export citation  
     
    Bookmark   153 citations  
  • Modal interpretations, decoherence and measurements.Guido Bacciagaluppi & Meir Hemmo - 1996 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 27 (3):239-277.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Non-integrability and mixing in quantum systems: On the way to quantum chaos.Mario Castagnino & Olimpia Lombardi - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (3):482-513.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Self-induced decoherence: a new approach.Mario Castagnino & Olimpia Lombardi - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 35 (1):73-107.
    According to Zurek, decoherence is a process resulting from the interaction between a quantum system and its environment; this process singles out a preferred set of states, usually called “pointer basis”, that determines which observables will receive definite values. This means that decoherence leads to a sort of selection which precludes all except a small subset of the states in the Hilbert space of the system from behaving in a classical manner: environment-induced-superselection—einselection —is a consequence of the process of decoherence. (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Truth and probability.Frank Ramsey - 2010 - In Antony Eagle (ed.), Philosophy of Probability: Contemporary Readings. New York: Routledge. pp. 52-94.
    Download  
     
    Export citation  
     
    Bookmark   598 citations  
  • Quantum mechanics and haecceities.Paul Teller - 1998 - In Elena Castellani (ed.), Interpreting Bodies: Classical and Quantum Objects in Modern Physics. Princeton University Press. pp. 114--141.
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • On the withering away of physical objects.Steven French - 1998 - In Elena Castellani (ed.), Interpreting Bodies: Classical and Quantum Objects in Modern Physics. Princeton University Press. pp. 93--113.
    Download  
     
    Export citation  
     
    Bookmark   78 citations  
  • On a quasi-set theory.Décio Krause - 1992 - Notre Dame Journal of Formal Logic 33 (3):402--11.
    Download  
     
    Export citation  
     
    Bookmark   79 citations  
  • The structure and interpretation of quantum mechanics.R. I. G. Hughes - 1989 - Cambridge: Harvard University Press.
    R.I.G Hughes offers the first detailed and accessible analysis of the Hilbert-space models used in quantum theory and explains why they are so successful.
    Download  
     
    Export citation  
     
    Bookmark   140 citations  
  • How the laws of physics lie.Nancy Cartwright - 1983 - New York: Oxford University Press.
    In this sequence of philosophical essays about natural science, the author argues that fundamental explanatory laws, the deepest and most admired successes of modern physics, do not in fact describe regularities that exist in nature. Cartwright draws from many real-life examples to propound a novel distinction: that theoretical entities, and the complex and localized laws that describe them, can be interpreted realistically, but the simple unifying laws of basic theory cannot.
    Download  
     
    Export citation  
     
    Bookmark   1199 citations  
  • Actualism.Christopher Menzel - 2008 - Stanford Encyclopedia of Philosophy.
    To understand the thesis of actualism, consider the following example. Imagine a race of beings — call them ‘Aliens’ — that is very different from any life-form that exists anywhere in the universe; different enough, in fact, that no actually existing thing could have been an Alien, any more than a given gorilla could have been a fruitfly. Now, even though there are no Aliens, it seems intuitively the case that there could have been such things. After all, life might (...)
    Download  
     
    Export citation  
     
    Bookmark   63 citations  
  • Particle labels and the theory of indistinguishable particles in quantum mechanics.Michael Redhead & Paul Teller - 1992 - British Journal for the Philosophy of Science 43 (2):201-218.
    We extend the work of French and Redhead [1988] further examining the relation of quantum statistics to the assumption that quantum entities have the sort of identity generally assumed for physical objects, more specifically an identity which makes them susceptible to being thought of as conceptually individuatable and labelable even though they cannot be experimentally distinguished. We also further examine the relation of such hypothesized identity of quantum entities to the Principle of the Identity of Indiscernibles. We conclude that although (...)
    Download  
     
    Export citation  
     
    Bookmark   75 citations  
  • The propensity interpretation of probability.Karl R. Popper - 1959 - British Journal for the Philosophy of Science 10 (37):25-42.
    Download  
     
    Export citation  
     
    Bookmark   237 citations  
  • On What There Is.W. V. O. Quine - 2011 - In Robert B. Talisse & Scott F. Aikin (eds.), The Pragmatism Reader: From Peirce Through the Present. Princeton University Press. pp. 221-233.
    Download  
     
    Export citation  
     
    Bookmark   368 citations  
  • Introduction to mathematical philosophy.Bertrand Russell - 1920 - Revue de Métaphysique et de Morale 27 (2):4-5.
    Download  
     
    Export citation  
     
    Bookmark   242 citations  
  • Introduction to Mathematical Philosophy.Bertrand Russell - 1919 - Revue Philosophique de la France Et de l'Etranger 89:465-466.
    Download  
     
    Export citation  
     
    Bookmark   486 citations  
  • Self-induced decoherence: a new approach.Mario Castagnino & Olimpia Lombardi - 2003 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 35 (1):73-107.
    According to Zurek, decoherence is a process resulting from the interaction between a quantum system and its environment; this process singles out a preferred set of states, usually called “pointer basis”, that determines which observables will receive definite values. This means that decoherence leads to a sort of selection which precludes all except a small subset of the states in the Hilbert space of the system from behaving in a classical manner: environment-induced-superselection—einselection —is a consequence of the process of decoherence. (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • A Treatise on Probability.J. M. Keynes - 1989 - British Journal for the Philosophy of Science 40 (2):219-222.
    Download  
     
    Export citation  
     
    Bookmark   299 citations  
  • Logical Foundations of Probability.Rudolf Carnap - 1950 - Mind 62 (245):86-99.
    Download  
     
    Export citation  
     
    Bookmark   871 citations  
  • Probability, Statistics and Truth.Richard von Mises & Hilda Geiringer - 1959 - Philosophy of Science 26 (4):387-388.
    Download  
     
    Export citation  
     
    Bookmark   89 citations  
  • How the Laws of Physics Lie.Malcolm R. Forster - 1985 - Philosophy of Science 52 (3):478-480.
    Download  
     
    Export citation  
     
    Bookmark   312 citations  
  • Unique transition probabilities in the modal interpretation.Pieter E. Vermaas - 1996 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 27 (2):133-159.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • An Introduction to Hilbert Space and Quantum Logic.David W. Cohen & David William Cohen - 1989 - Springer.
    Historically, nonclassical physics developed in three stages. First came a collection of ad hoc assumptions and then a cookbook of equations known as "quantum mechanics". The equations and their philosophical underpinnings were then collected into a model based on the mathematics of Hilbert space. From the Hilbert space model came the abstaction of "quantum logics". This book explores all three stages, but not in historical order. Instead, in an effort to illustrate how physics and abstract mathematics influence each other we (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • The Interpretation of Quantum Mechanics and the Measurement Process.Peter Mittelstaedt - 1998 - British Journal for the Philosophy of Science 49 (4):649-651.
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • The Problem of Hidden Variables in Quantum Mechanics.Simon Kochen & E. P. Specker - 1967 - Journal of Mathematics and Mechanics 17:59--87.
    Download  
     
    Export citation  
     
    Bookmark   494 citations  
  • The Problem of the Classical Limit of Quantum Mechanics and the Role of Self-Induced Decoherence.Mario Castagnino & Manuel Gadella - 2006 - Foundations of Physics 36 (6):920-952.
    Our account of the problem of the classical limit of quantum mechanics involves two elements. The first one is self-induced decoherence, conceived as a process that depends on the own dynamics of a closed quantum system governed by a Hamiltonian with continuous spectrum; the study of decoherence is addressed by means of a formalism used to give meaning to the van Hove states with diagonal singularities. The second element is macroscopicity represented by the limit $\hbar \rightarrow 0$ : when the (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The modal interpretation of quantum mechanics and its generalization to density operators.Pieter E. Vermaas & Dennis Dieks - 1995 - Foundations of Physics 25 (1):145-158.
    We generalize the modal interpretation of quantum mechanics so that it may be applied to composite systems represented by arbitrary density operators. We discuss the interpretation these density operators receive and relate this to the discussion about the interpretation of proper and improper mixtures in the standard interpretation.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Unified dynamics for microscopic and macroscopic systems.GianCarlo Ghirardi, Alberto Rimini & Tullio Weber - 1986 - Physical Review D 34 (D):470–491.
    Download  
     
    Export citation  
     
    Bookmark   399 citations  
  • Schrödinger Logics.Newton C. A. da Costa & Décio Krause - 1994 - Studia Logica 53 (4):533-550.
    Schrödinger logics are logical systems in which the principle of identity is not true in general. The intuitive motivation for these logics is both Erwin Schrödinger's thesis that identity lacks sense for elementary particles of modern physics, and the way which physicists deal with this concept; normally, they understand identity as meaning indistinguishability . Observing that these concepts are equivalent in classical logic and mathematics, which underly the usual physical theories, we present a higher-order logical system in which these concepts (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Unique transition probabilities in the modal interpretation.Pieter E. Vermaas - 1996 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 27 (2):133-159.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • An Intensional Schrödinger Logic.Newton C. A. da Costa & Décio Krause - 1997 - Notre Dame Journal of Formal Logic 38 (2):179-194.
    We investigate the higher-order modal logic , which is a variant of the system presented in our previous work. A semantics for that system, founded on the theory of quasi sets, is outlined. We show how such a semantics, motivated by the very intuitive base of Schrödinger logics, provides an alternative way to formalize some intensional concepts and features which have been used in recent discussions on the logical foundations of quantum mechanics; for example, that some terms like 'electron' have (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • The theory of probability.Hans Reichenbach - 1949 - Berkeley,: University of California Press.
    We must restrict to mere probability not only statements of comparatively great uncertainty, like predictions about the weather, where we would cautiously ...
    Download  
     
    Export citation  
     
    Bookmark   223 citations  
  • Interpretation and identity in quantum theory.Jeremy Butterfield - 1993 - Studies in History and Philosophy of Science Part A 24 (3):443--76.
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • Identity in physics: a historical, philosophical, and formal analysis.Steven French & Decio Krause - 2006 - New York: Oxford University Press. Edited by Decio Krause.
    Steven French and Decio Krause examine the metaphysical foundations of quantum physics. They draw together historical, logical, and philosophical perspectives on the fundamental nature of quantum particles and offer new insights on a range of important issues. Focusing on the concepts of identity and individuality, the authors explore two alternative metaphysical views; according to one, quantum particles are no different from books, tables, and people in this respect; according to the other, they most certainly are. Each view comes with certain (...)
    Download  
     
    Export citation  
     
    Bookmark   197 citations  
  • Introduction to mathematical philosophy.Bertrand Russell - 1919 - New York: Dover Publications.
    Download  
     
    Export citation  
     
    Bookmark   394 citations  
  • On the Paradoxical Aspects of New Quantum Experiments.Lev Vaidman - 1994 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1994:211 - 217.
    Two recently proposed quantum experiments are analyzed. The first allows to find an object without "touching" it. The second allows to teleport quantum states, transmitting a very small amount of information. It is shown that in the standard approach these experiments are in conflict with the intuitive notions of causality and locality. It is argued that the situation is less paradoxical in the framework of the many-worlds interpretation of quantum theory.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Self‐Induced Decoherence and the Classical Limit of Quantum Mechanics.Mario Castagnino & Olimpia Lombardi - 2005 - Philosophy of Science 72 (5):764-776.
    In this paper we argue that the emergence of the classical world from the underlying quantum reality involves two elements: self-induced decoherence and macroscopicity. Self-induced decoherence does not require the openness of the system and its interaction with the environment: a single closed system can decohere when its Hamiltonian has continuous spectrum. We show that, if the system is macroscopic enough, after self-induced decoherence it can be described as an ensemble of classical distributions weighted by their corresponding probabilities. We also (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • A Perspectival Version of the Modal Interpretation of Quantum Mechanics and the Origin of Macroscopic Behavior.Gyula Bene & Dennis Dieks - 2001 - Foundations of Physics 32 (5):645-671.
    We study the process of observation (measurement), within the framework of a “perspectival” (“relational,” “relative state”) version of the modal interpretation of quantum mechanics. We show that if we assume certain features of discreteness and determinism in the operation of the measuring device (which could be a part of the observer's nerve system), this gives rise to classical characteristics of the observed properties, in the first place to spatial localization. We investigate to what extent semi-classical behavior of the object system (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • The Development of Logic.William Kneale & Martha Kneale - 1962 - Studia Logica 15:308-310.
    Download  
     
    Export citation  
     
    Bookmark   310 citations  
  • The Development of Logic.William Kneale & Martha Kneale - 1962 - Oxford, England: Clarendon Press. Edited by Martha Kneale.
    This book traces the development of formal logic from its origins inancient Greece to the present day. The authors first discuss the work oflogicians from Aristotle to Frege, showing how they were influenced by thephilosophical or mathematical ideas of their time. They then examinedevelopments in the present century.
    Download  
     
    Export citation  
     
    Bookmark   296 citations