Switch to: Citations

Add references

You must login to add references.
  1. (2 other versions)Set theory.Thomas Jech - 1981 - Journal of Symbolic Logic.
    Download  
     
    Export citation  
     
    Bookmark   120 citations  
  • The fine structure of the constructible hierarchy.R. Björn Jensen - 1972 - Annals of Mathematical Logic 4 (3):229.
    Download  
     
    Export citation  
     
    Bookmark   270 citations  
  • Bounded forcing axioms as principles of generic absoluteness.Joan Bagaria - 2000 - Archive for Mathematical Logic 39 (6):393-401.
    We show that Bounded Forcing Axioms (for instance, Martin's Axiom, the Bounded Proper Forcing Axiom, or the Bounded Martin's Maximum) are equivalent to principles of generic absoluteness, that is, they assert that if a $\Sigma_1$ sentence of the language of set theory with parameters of small transitive size is forceable, then it is true. We also show that Bounded Forcing Axioms imply a strong form of generic absoluteness for projective sentences, namely, if a $\Sigma^1_3$ sentence with parameters is forceable, then (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • The Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal.W. Hugh Woodin - 2002 - Bulletin of Symbolic Logic 8 (1):91-93.
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • Proper and Improper Forcing.Péter Komjáath - 2000 - Studia Logica 64 (3):421-425.
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • (1 other version)Square in core models.Ernest Schimmerling & Martin Zeman - 2001 - Bulletin of Symbolic Logic 7 (3):305-314.
    We prove that in all Mitchell-Steel core models, □ κ holds for all κ. (See Theorem 2.). From this we obtain new consistency strength lower bounds for the failure of □ κ if κ is either singular and countably closed, weakly compact, or measurable. (Corallaries 5, 8, and 9.) Jensen introduced a large cardinal property that we call subcompactness; it lies between superstrength and supercompactness in the large cardinal hierarchy. We prove that in all Jensen core models, □ κ holds (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • The bounded proper forcing axiom.Martin Goldstern & Saharon Shelah - 1995 - Journal of Symbolic Logic 60 (1):58-73.
    The bounded proper forcing axiom BPFA is the statement that for any family of ℵ 1 many maximal antichains of a proper forcing notion, each of size ℵ 1 , there is a directed set meeting all these antichains. A regular cardinal κ is called Σ 1 -reflecting, if for any regular cardinal χ, for all formulas $\varphi, "H(\chi) \models`\varphi'"$ implies " $\exists\delta . We investigate several algebraic consequences of BPFA, and we show that the consistency strength of the bounded (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • [Omnibus Review].Thomas Jech - 1992 - Journal of Symbolic Logic 57 (1):261-262.
    Reviewed Works:John R. Steel, A. S. Kechris, D. A. Martin, Y. N. Moschovakis, Scales on $\Sigma^1_1$ Sets.Yiannis N. Moschovakis, Scales on Coinductive Sets.Donald A. Martin, John R. Steel, The Extent of Scales in $L$.John R. Steel, Scales in $L$.
    Download  
     
    Export citation  
     
    Bookmark   219 citations  
  • (1 other version)Square In Core Models, By, Pages 305 -- 314.Ernest Schimmerling & Martin Zeman - 2001 - Bulletin of Symbolic Logic 7 (3):305-314.
    We prove that in all Mitchell-Steel core models, □k holds for all k. From this we obtain new consistency strength lower bounds for the failure of □k if k is either singular and countably closed, weakly compact, or measurable. Jensen introduced a large cardinal property that we call subcompactness; it lies between superstrength and supercompactness in the large cardinal hierarchy. We prove that in all Jensen core models, □k holds iff k is not subcompact.
    Download  
     
    Export citation  
     
    Bookmark   19 citations