Switch to: Citations

Add references

You must login to add references.
  1. (1 other version)Formalization of Hilbert's Geometry of Incidence and Parallelism.Jan von Plato - 1997 - Synthese 110 (1):127-141.
    Three things are presented: How Hilbert changed the original construction postulates of his geometry into existential axioms; In what sense he formalized geometry; How elementary geometry is formalized to present day's standards.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A common axiom set for classical and intuitionistic plane geometry.Melinda Lombard & Richard Vesley - 1998 - Annals of Pure and Applied Logic 95 (1-3):229-255.
    We describe a first order axiom set which yields the classical first order Euclidean geometry of Tarski when used with classical logic, and yields an intuitionistic Euclidean geometry when used with intuitionistic logic. The first order language has a single six place atomic predicate and no function symbols. The intuitionistic system has a computational interpretation in recursive function theory, that is, a realizability interpretation analogous to those given by Kleene for intuitionistic arithmetic and analysis. This interpretation shows the unprovability in (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Proofs, pictures, and Euclid.John Mumma - 2010 - Synthese 175 (2):255 - 287.
    Though pictures are often used to present mathematical arguments, they are not typically thought to be an acceptable means for presenting mathematical arguments rigorously. With respect to the proofs in the Elements in particular, the received view is that Euclid's reliance on geometric diagrams undermines his efforts to develop a gap-free deductive theory. The central difficulty concerns the generality of the theory. How can inferences made from a particular diagrams license general mathematical results? After surveying the history behind the received (...)
    Download  
     
    Export citation  
     
    Bookmark   57 citations  
  • The Euclidean Diagram.Kenneth Manders - 2008 - In Paolo Mancosu (ed.), The Philosophy of Mathematical Practice. Oxford, England: Oxford University Press. pp. 80--133.
    This chapter gives a detailed study of diagram-based reasoning in Euclidean plane geometry (Books I, III), as well as an exploration how to characterise a geometric practice. First, an account is given of diagram attribution: basic geometrical claims are classified as exact (equalities, proportionalities) or co-exact (containments, contiguities); exact claims may only be inferred from prior entries in the demonstration text, but co-exact claims may be asserted based on what is seen in the diagram. Diagram control by constructions is necessary (...)
    Download  
     
    Export citation  
     
    Bookmark   98 citations  
  • Die Philosophie der Mathematik und die Hilbertsche Beweistheorie.Paul Bernays - 1978 - Journal of Symbolic Logic 43 (1):148-149.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Constructivity in Geometry.Richard Vesley - 1999 - History and Philosophy of Logic 20 (3-4):291-294.
    We review and contrast three ways to make up a formal Euclidean geometry which one might call constructive, in a computational sense. The starting point is the first-order geometry created by Tarski.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A formal system for euclid’s elements.Jeremy Avigad, Edward Dean & John Mumma - 2009 - Review of Symbolic Logic 2 (4):700--768.
    We present a formal system, E, which provides a faithful model of the proofs in Euclid's Elements, including the use of diagrammatic reasoning.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Philosophy of mathematics and deductive structure in Euclid's Elements.Ian Mueller - 1981 - Mineola, N.Y.: Dover Publications.
    A survey of Euclid's Elements, this text provides an understanding of the classical Greek conception of mathematics and its similarities to modern views as well as its differences. It focuses on philosophical, foundational, and logical questions — rather than strictly historical and mathematical issues — and features several helpful appendixes.
    Download  
     
    Export citation  
     
    Bookmark   61 citations  
  • (1 other version)Foundations of Geometery.David Hilbert & Paul Bernays - 1971 - Open Court.
    The material contained in the following translation was given in substance by Professor Hilbertas a course of lectures on euclidean geometry at the University of G]ottingen during the wintersemester of 1898-1899. The results of his investigation were re-arranged and put into the formin which they appear here as a memorial address published in connection with the celebration atthe unveiling of the Gauss-Weber monument at G]ottingen, in June, 1899. In the French edition, which appeared soon after, Professor Hilbert made some additions, (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Pasch’s philosophy of mathematics.Dirk Schlimm - 2010 - Review of Symbolic Logic 3 (1):93-118.
    Moritz Pasch (1843ber neuere Geometrie (1882), in which he also clearly formulated the view that deductions must be independent from the meanings of the nonlogical terms involved. Pasch also presented in these lectures the main tenets of his philosophy of mathematics, which he continued to elaborate on throughout the rest of his life. This philosophy is quite unique in combining a deductivist methodology with a radically empiricist epistemology for mathematics. By taking into consideration publications from the entire span of Paschs (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • (1 other version)Formalization of Hilbert's geometry of incidence and parallelism.Jan von Plato - 1997 - Synthese 110 (1):127-141.
    Three things are presented: How Hilbert changed the original construction postulates of his geometry into existential axioms; In what sense he formalized geometry; How elementary geometry is formalized to present day's standards.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Diagrammatic Reasoning and Representational Systems.Kenneth Manders - 2008 - In Paolo Mancosu (ed.), The Philosophy of Mathematical Practice. Oxford, England: Oxford University Press.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Formalization of Hilbert's geometry of incidence and parallelism.Jan Platvono - 1997 - Synthese 110 (1):127-141.
    Three things are presented: How Hilbert changed the original construction postulates of his geometry into existential axioms; In what sense he formalized geometry; How elementary geometry is formalized to present day's standards.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The axioms of constructive geometry.Jan von Plato - 1995 - Annals of Pure and Applied Logic 76 (2):169-200.
    Elementary geometry can be axiomatized constructively by taking as primitive the concepts of the apartness of a point from a line and the convergence of two lines, instead of incidence and parallelism as in the classical axiomatizations. I first give the axioms of a general plane geometry of apartness and convergence. Constructive projective geometry is obtained by adding the principle that any two distinct lines converge, and affine geometry by adding a parallel line construction, etc. Constructive axiomatization allows solutions to (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Axiomatizing geometric constructions.Victor Pambuccian - 2008 - Journal of Applied Logic 6 (1):24-46.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Philosophy of Mathematics and Deductive Structure of Euclid 's "Elements".Ian Mueller - 1983 - British Journal for the Philosophy of Science 34 (1):57-70.
    Download  
     
    Export citation  
     
    Bookmark   66 citations