Switch to: References

Citations of:

Foundations of Geometery

Open Court (1971)

Add citations

You must login to add citations.
  1. Coffa’s Kant and the evolution of accounts of mathematical necessity.William Mark Goodwin - 2010 - Synthese 172 (3):361-379.
    According to Alberto Coffa in The Semantic Tradition from Kant to Carnap, Kant’s account of mathematical judgment is built on a ‘semantic swamp’. Kant’s primitive semantics led him to appeal to pure intuition in an attempt to explain mathematical necessity. The appeal to pure intuition was, on Coffa’s line, a blunder from which philosophy was forced to spend the next 150 years trying to recover. This dismal assessment of Kant’s contributions to the evolution of accounts of mathematical necessity is fundamentally (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Existence Assumptions and Logical Principles: Choice Operators in Intuitionistic Logic.Corey Edward Mulvihill - 2015 - Dissertation, University of Waterloo
    Hilbert’s choice operators τ and ε, when added to intuitionistic logic, strengthen it. In the presence of certain extensionality axioms they produce classical logic, while in the presence of weaker decidability conditions for terms they produce various superintuitionistic intermediate logics. In this thesis, I argue that there are important philosophical lessons to be learned from these results. To make the case, I begin with a historical discussion situating the development of Hilbert’s operators in relation to his evolving program in the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Existential Import Today: New Metatheorems; Historical, Philosophical, and Pedagogical Misconceptions.John Corcoran & Hassan Masoud - 2015 - History and Philosophy of Logic 36 (1):39-61.
    Contrary to common misconceptions, today's logic is not devoid of existential import: the universalized conditional ∀ x [S→ P] implies its corresponding existentialized conjunction ∃ x [S & P], not in all cases, but in some. We characterize the proexamples by proving the Existential-Import Equivalence: The antecedent S of the universalized conditional alone determines whether the universalized conditional has existential import, i.e. whether it implies its corresponding existentialized conjunction.A predicate is an open formula having only x free. An existential-import predicate (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On the relationship between plane and solid geometry.Andrew Arana & Paolo Mancosu - 2012 - Review of Symbolic Logic 5 (2):294-353.
    Traditional geometry concerns itself with planimetric and stereometric considerations, which are at the root of the division between plane and solid geometry. To raise the issue of the relation between these two areas brings with it a host of different problems that pertain to mathematical practice, epistemology, semantics, ontology, methodology, and logic. In addition, issues of psychology and pedagogy are also important here. To our knowledge there is no single contribution that studies in detail even one of the aforementioned areas.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Logic for physical space: From antiquity to present days.Marco Aiello, Guram Bezhanishvili, Isabelle Bloch & Valentin Goranko - 2012 - Synthese 186 (3):619-632.
    Since the early days of physics, space has called for means to represent, experiment, and reason about it. Apart from physicists, the concept of space has intrigued also philosophers, mathematicians and, more recently, computer scientists. This longstanding interest has left us with a plethora of mathematical tools developed to represent and work with space. Here we take a special look at this evolution by considering the perspective of Logic. From the initial axiomatic efforts of Euclid, we revisit the major milestones (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)The Absence of Multiple Universes of Discourse in the 1936 Tarski Consequence-Definition Paper.John Corcoran & José Miguel Sagüillo - 2011 - History and Philosophy of Logic 32 (4):359-374.
    This paper discusses the history of the confusion and controversies over whether the definition of consequence presented in the 11-page 1936 Tarski consequence-definition paper is based on a monistic fixed-universe framework?like Begriffsschrift and Principia Mathematica. Monistic fixed-universe frameworks, common in pre-WWII logic, keep the range of the individual variables fixed as the class of all individuals. The contrary alternative is that the definition is predicated on a pluralistic multiple-universe framework?like the 1931 Gödel incompleteness paper. A pluralistic multiple-universe framework recognizes multiple (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (1 other version)Completeness and Categoricity. Part I: Nineteenth-century Axiomatics to Twentieth-century Metalogic.Steve Awodey & Erich H. Reck - 2002 - History and Philosophy of Logic 23 (1):1-30.
    This paper is the first in a two-part series in which we discuss several notions of completeness for systems of mathematical axioms, with special focus on their interrelations and historical origins in the development of the axiomatic method. We argue that, both from historical and logical points of view, higher-order logic is an appropriate framework for considering such notions, and we consider some open questions in higher-order axiomatics. In addition, we indicate how one can fruitfully extend the usual set-theoretic semantics (...)
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • Domains of Sciences, Universes of Discourse and Omega Arguments.Jose M. Saguillo - 1999 - History and Philosophy of Logic 20 (3-4):267-290.
    Each science has its own domain of investigation, but one and the same science can be formalized in different languages with different universes of discourse. The concept of the domain of a science and the concept of the universe of discourse of a formalization of a science are distinct, although they often coincide in extension. In order to analyse the presuppositions and implications of choices of domain and universe, this article discusses the treatment of omega arguments in three very different (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (1 other version)The Founding of Logic: Modern Interpretations of Aristotle’s Logic.John Corcoran - 1994 - Ancient Philosophy 14 (S1):9-24.
    Since the time of Aristotle's students, interpreters have considered Prior Analytics to be a treatise about deductive reasoning, more generally, about methods of determining the validity and invalidity of premise-conclusion arguments. People studied Prior Analytics in order to learn more about deductive reasoning and to improve their own reasoning skills. These interpreters understood Aristotle to be focusing on two epistemic processes: first, the process of establishing knowledge that a conclusion follows necessarily from a set of premises (that is, on the (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Models and theories I: The semantic view revisited.Chuang Liu - 1997 - International Studies in the Philosophy of Science 11 (2):147 – 164.
    The paper, as Part I of a two-part series, argues for a hybrid formulation of the semantic view of scientific theories. For stage-setting, it first reviews the elements of the model theory in mathematical logic (on whose foundation the semantic view rests), the syntactic and the semantic view, and the different notions of models used in the practice of science. The paper then argues for an integration of the notions into the semantic view, and thereby offers a hybrid semantic view, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The development of mathematical logic from Russell to Tarski, 1900-1935.Paolo Mancosu, Richard Zach & Calixto Badesa - 2009 - In Leila Haaparanta (ed.), The development of modern logic. New York: Oxford University Press.
    The period from 1900 to 1935 was particularly fruitful and important for the development of logic and logical metatheory. This survey is organized along eight "itineraries" concentrating on historically and conceptually linked strands in this development. Itinerary I deals with the evolution of conceptions of axiomatics. Itinerary II centers on the logical work of Bertrand Russell. Itinerary III presents the development of set theory from Zermelo onward. Itinerary IV discusses the contributions of the algebra of logic tradition, in particular, Löwenheim (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • How nominalist is Hartry field's nominalism?Michael D. Resnik - 1985 - Philosophical Studies 47 (2):163 - 181.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Learning from questions on categorical foundations.Colin McLarty - 2005 - Philosophia Mathematica 13 (1):44-60.
    We can learn from questions as well as from their answers. This paper urges some things to learn from questions about categorical foundations for mathematics raised by Geoffrey Hellman and from ones he invokes from Solomon Feferman.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Logical Conventionalism.Jared Warren - unknown - In Filippo Ferrari, Elke Brendel, Massimiliano Carrara, Ole Hjortland, Gil Sagi, Gila Sher & Florian Steinberger (eds.), Oxford Handbook of Philosophy of Logic. Oxford, UK: Oxford University Press.
    Once upon a time, logical conventionalism was the most popular philosophical theory of logic. It was heavily favored by empiricists, logical positivists, and naturalists. According to logical conventionalism, linguistic conventions explain logical truth, validity, and modality. And conventions themselves are merely syntactic rules of language use, including inference rules. Logical conventionalism promised to eliminate mystery from the philosophy of logic by showing that both the metaphysics and epistemology of logic fit into a scientific picture of reality. For naturalists of all (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Why Euclid’s geometry brooked no doubt: J. H. Lambert on certainty and the existence of models.Katherine Dunlop - 2009 - Synthese 167 (1):33-65.
    J. H. Lambert proved important results of what we now think of as non-Euclidean geometries, and gave examples of surfaces satisfying their theorems. I use his philosophical views to explain why he did not think the certainty of Euclidean geometry was threatened by the development of what we regard as alternatives to it. Lambert holds that theories other than Euclid's fall prey to skeptical doubt. So despite their satisfiability, for him these theories are not equal to Euclid's in justification. Contrary (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The Dynamical Approach as Practical Geometry.Syman Stevens - 2015 - Philosophy of Science 82 (5):1152-1162.
    This article introduces Harvey Brown and Oliver Pooley’s ‘dynamical approach’ to special relativity, and argues that it may be construed as a relationalist form of Einstein’s ‘practical geometry’. This construal of the dynamical approach is shown to be compatible with related chapters of Brown’s text and also with recent descriptions of the dynamical approach by Pooley and others.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Methodological Practice and Complementary Concepts of Logical Consequence: Tarski's Model-Theoretic Consequence and Corcoran's Information-Theoretic Consequence.José M. Sagüillo - 2009 - History and Philosophy of Logic 30 (1):21-48.
    This article discusses two coextensive concepts of logical consequence that are implicit in the two fundamental logical practices of establishing validity and invalidity for premise-conclusion arguments. The premises and conclusion of an argument have information content (they ?say? something), and they have subject matter (they are ?about? something). The asymmetry between establishing validity and establishing invalidity has long been noted: validity is established through an information-processing procedure exhibiting a step-by-step deduction of the conclusion from the premise-set. Invalidity is established by (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • How mathematical concepts get their bodies.Andrei Rodin - 2010 - Topoi 29 (1):53-60.
    When the traditional distinction between a mathematical concept and a mathematical intuition is tested against examples taken from the real history of mathematics one can observe the following interesting phenomena. First, there are multiple examples where concepts and intuitions do not well fit together; some of these examples can be described as “poorly conceptualised intuitions” while some others can be described as “poorly intuited concepts”. Second, the historical development of mathematics involves two kinds of corresponding processes: poorly conceptualised intuitions are (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The interactivist model.Mark H. Bickhard - 2009 - Synthese 166 (3):547 - 591.
    A shift from a metaphysical framework of substance to one of process enables an integrated account of the emergence of normative phenomena. I show how substance assumptions block genuine ontological emergence, especially the emergence of normativity, and how a process framework permits a thermodynamic-based account of normative emergence. The focus is on two foundational forms of normativity, that of normative function and of representation as emergent in a particular kind of function. This process model of representation, called interactivism, compels changes (...)
    Download  
     
    Export citation  
     
    Bookmark   64 citations  
  • Logic, ontology, mathematical practice.Stewart Shapiro - 1989 - Synthese 79 (1):13 - 50.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • From geometry to phenomenology.Mirja Helena Hartimo - 2008 - Synthese 162 (2):225-233.
    Richard Tieszen [Tieszen, R. (2005). Philosophy and Phenomenological Research, LXX(1), 153–173.] has argued that the group-theoretical approach to modern geometry can be seen as a realization of Edmund Husserl’s view of eidetic intuition. In support of Tieszen’s claim, the present article discusses Husserl’s approach to geometry in 1886–1902. Husserl’s first detailed discussion of the concept of group and invariants under transformations takes place in his notes on Hilbert’s Memoir Ueber die Grundlagen der Geometrie that Hilbert wrote during the winter 1901–1902. (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Modal Logics for Parallelism, Orthogonality, and Affine Geometries.Philippe Balbiani & Valentin Goranko - 2002 - Journal of Applied Non-Classical Logics 12 (3-4):365-397.
    We introduce and study a variety of modal logics of parallelism, orthogonality, and affine geometries, for which we establish several completeness, decidability and complexity results and state a number of related open, and apparently difficult problems. We also demonstrate that lack of the finite model property of modal logics for sufficiently rich affine or projective geometries (incl. the real affine and projective planes) is a rather common phenomenon.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Non-Descriptivism About Modality. A Brief History And Revival.Amie Thomasson - 2008 - The Baltic International Yearbook of Cognition, Logic and Communication 4:8.
    Despite the otherwise-dominant trends towards physicalism and naturalism in philosophy, it has become increasingly common for metaphysicians to accept the existence either of modal facts and properties, or of Lewisian possible worlds. This paper raises the historical question: why did these heavyweight realist views come into prominence? The answer is that they have arisen in response to the demand to find truthmakers for our modal statements. But this demand presupposes that modal statements are descriptive claims in need of truthmakers. This (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Frege on Indirect Proof.Ivan Welty - 2011 - History and Philosophy of Logic 32 (3):283-290.
    Frege's account of indirect proof has been thought to be problematic. This thought seems to rest on the supposition that some notion of logical consequence ? which Frege did not have ? is indispensable for a satisfactory account of indirect proof. It is not so. Frege's account is no less workable than the account predominant today. Indeed, Frege's account may be best understood as a restatement of the latter, although from a higher order point of view. I argue that this (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Archimedean Intuitions.Matthew E. Moore - 2002 - Theoria 68 (3):185-204.
    The Archimedean Axiom is often held to be an intuitively obvious truth about the geometry of physical space. After a general discussion of the varieties of geometrical intuition that have been proposed, I single out one variety which we can plausibly be held to have and then argue that it does not underwrite the intuitive obviousness of the Archimedean Axiom. Generalizing that result, I conclude that the Axiom is not intuitively obvious.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Ontology and logic: remarks on hartry field's anti-platonist philosophy of mathematics.Michael D. Resnik - 1985 - History and Philosophy of Logic 6 (1):191-209.
    In Science without numbers Hartry Field attempted to formulate a nominalist version of Newtonian physics?one free of ontic commitment to numbers, functions or sets?sufficiently strong to have the standard platonist version as a conservative extension. However, when uses for abstract entities kept popping up like hydra heads, Field enriched his logic to avoid them. This paper reviews some of Field's attempts to deflate his ontology by inflating his logic.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On the general theory of meaningful representation.Brent Mundy - 1986 - Synthese 67 (3):391 - 437.
    The numerical representations of measurement, geometry and kinematics are here subsumed under a general theory of representation. The standard theories of meaningfulness of representational propositions in these three areas are shown to be special cases of two theories of meaningfulness for arbitrary representational propositions: the theories based on unstructured and on structured representation respectively. The foundations of the standard theories of meaningfulness are critically analyzed and two basic assumptions are isolated which do not seem to have received adequate justification: the (...)
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • Axiomatizing Changing Conceptions of the Geometric Continuum I: Euclid-Hilbert†.John T. Baldwin - 2018 - Philosophia Mathematica 26 (3):346-374.
    We give a general account of the goals of axiomatization, introducing a variant on Detlefsen’s notion of ‘complete descriptive axiomatization’. We describe how distinctions between the Greek and modern view of number, magnitude, and proportion impact the interpretation of Hilbert’s axiomatization of geometry. We argue, as did Hilbert, that Euclid’s propositions concerning polygons, area, and similar triangles are derivable from Hilbert’s first-order axioms. We argue that Hilbert’s axioms including continuity show much more than the geometrical propositions of Euclid’s theorems and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Classical physical abstraction.Ernest W. Adams - 1993 - Erkenntnis 38 (2):145 - 167.
    An informal theory is set forth of relations between abstract entities, includingcolors, physical quantities, times, andplaces in space, and the concrete things thathave them, or areat orin them, based on the assumption that there are close analogies between these relations and relations between abstractsets and the concrete things that aremembers of them. It is suggested that even standard scientific usage of these abstractions presupposes principles that are analogous to postulates of abstraction, identity, and other fundamental principles of set theory. Also (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Independence of the Parallel Postulate and Development of Rigorous Consistency Proofs.David J. Stump - 2007 - History and Philosophy of Logic 28 (1):19-30.
    I trace the development of arguments for the consistency of non-Euclidean geometries and for the independence of the parallel postulate, showing how the arguments become more rigorous as a formal conception of geometry is introduced. I analyze the kinds of arguments offered by Jules Hoüel in 1860-1870 for the unprovability of the parallel postulate and for the existence of non-Euclidean geometries, especially his reaction to the publication of Beltrami’s seminal papers, showing that Beltrami was much more concerned with the existence (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The philosophy of Hans Reichenbach.Wesley C. Salmon - 1977 - Synthese 34 (1):5 - 88.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Constructive geometrical reasoning and diagrams.John Mumma - 2012 - Synthese 186 (1):103-119.
    Modern formal accounts of the constructive nature of elementary geometry do not aim to capture the intuitive or concrete character of geometrical construction. In line with the general abstract approach of modern axiomatics, nothing is presumed of the objects that a geometric construction produces. This study explores the possibility of a formal account of geometric construction where the basic geometric objects are understood from the outset to possess certain spatial properties. The discussion is centered around Eu , a recently developed (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Intrinsic Explanation and Field’s Dispensabilist Strategy.Russell Marcus - 2013 - International Journal of Philosophical Studies 21 (2):163-183.
    Philosophy of mathematics for the last half-century has been dominated in one way or another by Quine’s indispensability argument. The argument alleges that our best scientific theory quantifies over, and thus commits us to, mathematical objects. In this paper, I present new considerations which undermine the most serious challenge to Quine’s argument, Hartry Field’s reformulation of Newtonian Gravitational Theory.
    Download  
     
    Export citation  
     
    Bookmark  
  • Angular-momentum theory and projective geometry.B. R. Judd - 1983 - Foundations of Physics 13 (1):51-59.
    The Desarguesian nature of angular-momentum theory is illustrated by drawing correspondences between relations satisfied by then-j symbols and various collinearity properties of the appropriate diagrams. No examples of Pappus' theorem have been found. A relation is suggested between the operations of angular-momentum theory and Hilbert's constructions for the addition and multiplication of points on a line.
    Download  
     
    Export citation  
     
    Bookmark  
  • Bridging the gap between analytic and synthetic geometry: Hilbert’s axiomatic approach.Eduardo N. Giovannini - 2016 - Synthese 193 (1):31-70.
    The paper outlines an interpretation of one of the most important and original contributions of David Hilbert’s monograph Foundations of Geometry , namely his internal arithmetization of geometry. It is claimed that Hilbert’s profound interest in the problem of the introduction of numbers into geometry responded to certain epistemological aims and methodological concerns that were fundamental to his early axiomatic investigations into the foundations of elementary geometry. In particular, it is shown that a central concern that motivated Hilbert’s axiomatic investigations (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The mathematical foundations of quantum mechanics.David A. Edwards - 1979 - Synthese 42 (1):1 - 70.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On Euclidean diagrams and geometrical knowledge.Tamires Dal Magro & Manuel J. García-Pérez - 2019 - Theoria. An International Journal for Theory, History and Foundations of Science 34 (2):255.
    We argue against the claim that the employment of diagrams in Euclidean geometry gives rise to gaps in the proofs. First, we argue that it is a mistake to evaluate its merits through the lenses of Hilbert’s formal reconstruction. Second, we elucidate the abilities employed in diagram-based inferences in the Elements and show that diagrams are mathematically reputable tools. Finally, we complement our analysis with a review of recent experimental results purporting to show that, not only is the Euclidean diagram-based (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Problems and riddles: Hilbert and the du Bois-reymonds.D. C. Mc Carty - 2005 - Synthese 147 (1):63-79.
    Download  
     
    Export citation  
     
    Bookmark   4 citations