- A Misdirected Principle with a Catch: Explicability for AI.Scott Robbins - 2019 - Minds and Machines 29 (4):495-514.details
|
|
The Pragmatic Turn in Explainable Artificial Intelligence.Andrés Páez - 2019 - Minds and Machines 29 (3):441-459.details
|
|
How many kinds of reasons?Maria Alvarez - 2007 - Philosophical Explorations 12 (2):181 – 193.details
|
|
Depth: An Account of Scientific Explanation.Michael Strevens - 2008 - Cambridge: Harvard University Press.details
|
|
Reasons for Action.Pamela Hieronymi - 2011 - Proceedings of the Aristotelian Society 111 (3pt3):407-427.details
|
|
Explanation in artificial intelligence: Insights from the social sciences.Tim Miller - 2019 - Artificial Intelligence 267 (C):1-38.details
|
|
The Intentional Stance.Daniel Clement Dennett - 1981 - MIT Press.details
|
|
Against Interpretability: a Critical Examination of the Interpretability Problem in Machine Learning.Maya Krishnan - 2020 - Philosophy and Technology 33 (3):487-502.details
|
|
Aspects of scientific explanation.Carl G. Hempel - 1965 - In Carl Gustav Hempel (ed.), Aspects of Scientific Explanation and Other Essays in the Philosophy of Science. New York: The Free Press. pp. 504.details
|
|
A Survey of Methods for Explaining Black Box Models.Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca Giannotti & Dino Pedreschi - 2019 - ACM Computing Surveys 51 (5):1-42.details
|
|
The Scientific Image.William Demopoulos & Bas C. van Fraassen - 1982 - Philosophical Review 91 (4):603.details
|
|
Scientific progress: Knowledge versus understanding.Finnur Dellsén - 2016 - Studies in History and Philosophy of Science Part A 56 (C):72-83.details
|
|
Transparency in Complex Computational Systems.Kathleen A. Creel - 2020 - Philosophy of Science 87 (4):568-589.details
|
|
Black-box artificial intelligence: an epistemological and critical analysis.Manuel Carabantes - 2020 - AI and Society 35 (2):309-317.details
|
|
How the machine ‘thinks’: Understanding opacity in machine learning algorithms.Jenna Burrell - 2016 - Big Data and Society 3 (1):205395171562251.details
|
|
Peeking inside the black-box: A survey on explainable artificial intelligence (XAI).A. Adadi & M. Berrada - 2018 - IEEE Access 6.details
|
|
Scientific Exploration and Explainable Artificial Intelligence.Carlos Zednik & Hannes Boelsen - 2022 - Minds and Machines 32 (1):219-239.details
|
|
(2 other versions)The explanation game: a formal framework for interpretable machine learning.David S. Watson & Luciano Floridi - 2021 - Synthese 198 (10):9211-9242.details
|
|
Why Attention is Not Explanation: Surgical Intervention and Causal Reasoning about Neural Models.Christopher Grimsley, Elijah Mayfield & Julia Bursten - 2020 - Proceedings of the 12th Conference on Language Resources and Evaluation.details
|
|
(2 other versions)The explanation game: a formal framework for interpretable machine learning.David S. Watson & Luciano Floridi - 2020 - Synthese 198 (10):1–32.details
|
|
Solving the Black Box Problem: A Normative Framework for Explainable Artificial Intelligence.Carlos Zednik - 2019 - Philosophy and Technology 34 (2):265-288.details
|
|
Understanding from Machine Learning Models.Emily Sullivan - 2022 - British Journal for the Philosophy of Science 73 (1):109-133.details
|
|
Understanding Scientific Understanding.Henk W. de Regt - 2017 - New York: Oup Usa.details
|
|
(1 other version)The Value of Understanding.Jonathan L. Kvanvig - 2009 - In Adrian Haddock, Alan Millar & Duncan Pritchard (eds.), Epistemic value. New York: Oxford University Press. pp. 95-112.details
|
|
Transparency in Algorithmic and Human Decision-Making: Is There a Double Standard?John Zerilli, Alistair Knott, James Maclaurin & Colin Gavaghan - 2018 - Philosophy and Technology 32 (4):661-683.details
|
|
(2 other versions)The Explanation Game: A Formal Framework for Interpretable Machine Learning.David S. Watson & Luciano Floridi - 2021 - In Josh Cowls & Jessica Morley (eds.), The 2020 Yearbook of the Digital Ethics Lab. Springer Verlag. pp. 109-143.details
|
|