Switch to: Citations

Add references

You must login to add references.
  1. Equivalent Theories Redefine Hamiltonian Observables to Exhibit Change in General Relativity.J. Brian Pitts - unknown
    Change and local spatial variation are missing in canonical General Relativity's observables as usually defined, an aspect of the problem of time. Definitions can be tested using equivalent formulations of a theory, non-gauge and gauge, because they must have equivalent observables and everything is observable in the non-gauge formulation. Taking an observable from the non-gauge formulation and finding the equivalent in the gauge formulation, one requires that the equivalent be an observable, thus constraining definitions. For massive photons, the de Broglie-Proca (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Regarding the ‘Hole Argument’.James Owen Weatherall - 2018 - British Journal for the Philosophy of Science 69 (2):329-350.
    I argue that the hole argument is based on a misleading use of the mathematical formalism of general relativity. If one is attentive to mathematical practice, I will argue, the hole argument is blocked. _1._ Introduction _2._ A Warmup Exercise _3._ The Hole Argument _4._ An Argument from Classical Spacetime Theory _5._ The Hole Argument Revisited.
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • Thoroughly modern Mctaggart: Or, what Mctaggart would have said if he had read the general theory of relativity.John Earman - 2002 - Philosophers' Imprint 2:1-28.
    The philosophical literature on time and change is fixated on the issue of whether the B-series account of change is adequate or whether real change requires Becoming of either the property-based variety of McTaggart's A-series or the non-property-based form embodied in C. D. Broad's idea of the piling up of successive layers of existence. For present purposes it is assumed that the B-series suffices to ground real change. But then it is noted that modern science in the guise of Einstein's (...)
    Download  
     
    Export citation  
     
    Bookmark   74 citations  
  • Regarding the ‘Hole Argument’.James Owen Weatherall - 2016 - British Journal for the Philosophy of Science:axw012.
    I argue that the Hole Argument is based on a misleading use of the mathematical formalism of general relativity. If one is attentive to mathematical practice, I will argue, the Hole Argument is blocked.
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • The Reinvention of General Relativity: A Historiographical Framework for Assessing One Hundred Years of Curved Space-time.Alexander Blum, Roberto Lalli & Jürgen Renn - 2015 - Isis 106 (3):598-620.
    The history of the theory of general relativity presents unique features. After its discovery, the theory was immediately confirmed and rapidly changed established notions of space and time. The further implications of general relativity, however, remained largely unexplored until the mid 1950s, when it came into focus as a physical theory and gradually returned to the mainstream of physics. This essay presents a historiographical framework for assessing the history of general relativity by taking into account in an integrated narrative intellectual (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • A First Class Constraint Generates Not a Gauge Transformation, But a Bad Physical Change: The Case of Electromagnetism.J. Brian Pitts - unknown
    In Dirac-Bergmann constrained dynamics, a first-class constraint typically does not _alone_ generate a gauge transformation. By direct calculation it is found that each first-class constraint in Maxwell's theory generates a change in the electric field E by an arbitrary gradient, spoiling Gauss's law. The secondary first-class constraint p^i,_i=0 still holds, but being a function of derivatives of momenta, it is not directly about E. Only a special combination of the two first-class constraints, the Anderson-Bergmann -Castellani gauge generator G, leaves E (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • On Dirac's incomplete analysis of gauge transformations.Josep M. Pons - 2005 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 36 (3):491-518.
    Dirac's approach to gauge symmetries is discussed. We follow closely the steps that led him from his conjecture concerning the generators of gauge transformations {\it at a given time} ---to be contrasted with the common view of gauge transformations as maps from solutions of the equations of motion into other solutions--- to his decision to artificially modify the dynamics, substituting the extended Hamiltonian for the total Hamiltonian. We show in detail that Dirac's analysis was incomplete and, in completing it, we (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Equivalent Theories and Changing Hamiltonian Observables in General Relativity.J. Brian Pitts - 2018 - Foundations of Physics 48 (5):579-590.
    Change and local spatial variation are missing in Hamiltonian general relativity according to the most common definition of observables as having 0 Poisson bracket with all first-class constraints. But other definitions of observables have been proposed. In pursuit of Hamiltonian–Lagrangian equivalence, Pons, Salisbury and Sundermeyer use the Anderson–Bergmann–Castellani gauge generator G, a tuned sum of first-class constraints. Kuchař waived the 0 Poisson bracket condition for the Hamiltonian constraint to achieve changing observables. A systematic combination of the two reforms might use (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Quantum Gravity Meets &HPS.Dean Rickles - unknown
    I examine the early history of quantum gravity and comment on its suitability as an episode that demands an integrated approach to history and philosophy of science.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Change in Hamiltonian general relativity from the lack of a time-like Killing vector field.J. Brian Pitts - 2014 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 47:68-89.
    In General Relativity in Hamiltonian form, change has seemed to be missing, defined only asymptotically, or otherwise obscured at best, because the Hamiltonian is a sum of first-class constraints and a boundary term and thus supposedly generates gauge transformations. Attention to the gauge generator G of Rosenfeld, Anderson, Bergmann, Castellani et al., a specially _tuned sum_ of first-class constraints, facilitates seeing that a solitary first-class constraint in fact generates not a gauge transformation, but a bad physical change in electromagnetism or (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • What Are Observables in Hamiltonian Einstein–Maxwell Theory?James Pitts - 2019 - Foundations of Physics 49 (8):786-796.
    Is change missing in Hamiltonian Einstein–Maxwell theory? Given the most common definition of observables, observables are constants of the motion and nonlocal. Unfortunately this definition also implies that the observables for massive electromagnetism with gauge freedom are inequivalent to those of massive electromagnetism without gauge freedom. The alternative Pons–Salisbury–Sundermeyer definition of observables, aiming for Hamiltonian–Lagrangian equivalence, uses the gauge generator G, a tuned sum of first-class constraints, rather than each first-class constraint separately, and implies equivalent observables for equivalent massive electromagnetisms. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Geometry, Chronometry and Empiricism.Adolf Grünbaum - 1967 - Critica 1 (2):106-109.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Change in Hamiltonian General Relativity with Spinors.J. Brian Pitts - 2021 - Foundations of Physics 51 (6):1-30.
    In General Relativity in Hamiltonian form, change has seemed to be missing, defined only asymptotically, or otherwise obscured at best, because the Hamiltonian is a sum of first-class constraints and a boundary term and thus supposedly generates gauge transformations. By construing change as essential time dependence, one can find change locally in vacuum GR in the Hamiltonian formulation just where it should be. But what if spinors are present? This paper is motivated by the tendency in space-time philosophy tends to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation