Switch to: Citations

References in:

Gödel's Incompleteness Theorems

The Stanford Encyclopedia of Philosophy (Winter 2013 Edition), Edward N. Zalta (Ed.) (2013)

Add references

You must login to add references.
  1. Hilbert’s Program.Richard Zach - 2014 - In Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy. Stanford, CA: The Metaphysics Research Lab.
    In the early 1920s, the German mathematician David Hilbert (1862–1943) put forward a new proposal for the foundation of classical mathematics which has come to be known as Hilbert's Program. It calls for a formalization of all of mathematics in axiomatic form, together with a proof that this axiomatization of mathematics is consistent. The consistency proof itself was to be carried out using only what Hilbert called “finitary” methods. The special epistemological character of finitary reasoning then yields the required justification (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Kurt Gödel: Conviction and Caution.Solomon Feferman - 1984 - Philosophia Naturalis 21 (2/4):546-562.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Why a Little Bit Goes a Long Way: Logical Foundations of Scientifically Applicable Mathematics.Solomon Feferman - 1992 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1992:442 - 455.
    Does science justify any part of mathematics and, if so, what part? These questions are related to the so-called indispensability arguments propounded, among others, by Quine and Putnam; moreover, both were led to accept significant portions of set theory on that basis. However, set theory rests on a strong form of Platonic realism which has been variously criticized as a foundation of mathematics and is at odds with scientific realism. Recent logical results show that it is possible to directly formalize (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • (5 other versions)Grundzüge der theoretischen logik.David Hilbert - 1928 - Berlin,: G. Springer. Edited by Wilhelm Ackermann.
    Die theoretische Logik, auch mathematische oder symbolische Logik genannt, ist eine Ausdehnung der fonnalen Methode der Mathematik auf das Gebiet der Logik. Sie wendet fUr die Logik eine ahnliche Fonnel­ sprache an, wie sie zum Ausdruck mathematischer Beziehungen schon seit langem gebrauchlich ist. In der Mathematik wurde es heute als eine Utopie gelten, wollte man beim Aufbau einer mathematischen Disziplin sich nur der gewohnlichen Sprache bedienen. Die groBen Fortschritte, die in der Mathematik seit der Antike gemacht worden sind, sind zum (...)
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • Introduction to metamathematics.Stephen Cole Kleene - 1952 - Groningen: P. Noordhoff N.V..
    Stephen Cole Kleene was one of the greatest logicians of the twentieth century and this book is the influential textbook he wrote to teach the subject to the next generation. It was first published in 1952, some twenty years after the publication of Godel's paper on the incompleteness of arithmetic, which marked, if not the beginning of modern logic. The 1930s was a time of creativity and ferment in the subject, when the notion of computable moved from the realm of (...)
    Download  
     
    Export citation  
     
    Bookmark   551 citations  
  • Set theory and the continuum hypothesis.Paul J. Cohen - 1966 - New York,: W. A. Benjamin.
    This exploration of a notorious mathematical problem is the work of the man who discovered the solution. Written by an award-winning professor at Stanford University, it employs intuitive explanations as well as detailed mathematical proofs in a self-contained treatment. This unique text and reference is suitable for students and professionals. 1966 edition. Copyright renewed 1994.
    Download  
     
    Export citation  
     
    Bookmark   105 citations  
  • (1 other version)From Brouwer to Hilbert: the debate on the foundations of mathematics in the 1920s.Paolo Mancosu (ed.) - 1998 - New York: Oxford University Press.
    From Brouwer To Hilbert: The Debate on the Foundations of Mathematics in the 1920s offers the first comprehensive introduction to the most exciting period in the foundation of mathematics in the twentieth century. The 1920s witnessed the seminal foundational work of Hilbert and Bernays in proof theory, Brouwer's refinement of intuitionistic mathematics, and Weyl's predicativist approach to the foundations of analysis. This impressive collection makes available the first English translations of twenty-five central articles by these important contributors and many others. (...)
    Download  
     
    Export citation  
     
    Bookmark   73 citations  
  • (2 other versions)Set Theory and the Continuum Hypothesis.Kenneth Kunen - 1966 - Journal of Symbolic Logic 35 (4):591-592.
    Download  
     
    Export citation  
     
    Bookmark   75 citations  
  • A Note on the Entscheidungs Problem.Alonzo Church - 1936 - Journal of Symbolic Logic 1 (2):74-74.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Reflections on Kurt Gödel.Hao Wang - 1990 - Bradford.
    In this first extended treatment of his life and work, Hao Wang, who was in close contact with Godel in his last years, brings out the full subtlety of Godel's ideas and their connection with grand themes in the history of mathematics and ...
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • The Emperor's New Mind: Concerning Computers, Minds, and the Laws of Physics.Roger Penrose - 1999 - Oxford University Press.
    In his bestselling work of popular science, Sir Roger Penrose takes us on a fascinating roller-coaster ride through the basic principles of physics, cosmology, mathematics, and philosophy to show that human thinking can never be emulated by a machine.
    Download  
     
    Export citation  
     
    Bookmark   186 citations  
  • The Reception of Godel's Incompleteness Theorems.John W. Dawson - 1984 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1984:253 - 271.
    According to several commentators, Kurt Godel's incompleteness discoveries were assimilated promptly and almost without objection by his contemporaries - - a circumstance remarkable enough to call for explanation. Careful examination reveals, however, that there were doubters and critics, as well as defenders and rival claimants to priority. In particular, the reactions of Carnap, Bernays, Zermelo, Post, Finsler, and Russell, among others, are considered in detail. Documentary sources include unpublished correspondence from Godel's Nachlass.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Minds and Machines.Alan Ross Anderson - 1964 - Prentice-Hall.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • How subtle is Gödel's theorem? More on Roger Penrose.Martin Davis - 1993 - Behavioral and Brain Sciences 16 (3):611-612.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • (1 other version)From Brouwer to Hilbert: The Debate on the Foundations of Mathematics in the 1920s.Paolo Mancosu (ed.) - 1997 - Oxford, England: Oxford University Press USA.
    From Brouwer To Hilbert: The Debate on the Foundations of Mathematics in the 1920s offers the first comprehensive introduction to the most exciting period in the foundation of mathematics in the twentieth century. The 1920s witnessed the seminal foundational work of Hilbert and Bernays in proof theory, Brouwer's refinement of intuitionistic mathematics, and Weyl's predicativist approach to the foundations of analysis. This impressive collection makes available the first English translations of twenty-five central articles by these important contributors and many others. (...)
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • Logical Dilemmas: The Life and Work of Kurt Gödel.John W. Dawson - 1999 - Studia Logica 63 (1):147-150.
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  • Grundzüge der theoretischen Logik.D. Hilbert & W. Ackermann - 1928 - Annalen der Philosophie Und Philosophischen Kritik 7:157-157.
    Download  
     
    Export citation  
     
    Bookmark   212 citations  
  • Godel's Theorem in Focus.Stuart Shanker (ed.) - 1987 - Routledge.
    A layman's guide to the mechanics of Gödel's proof together with a lucid discussion of the issues which it raises. Includes an essay discussing the significance of Gödel's work in the light of Wittgenstein's criticisms.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The incompleteness theorems.Craig Smorynski - 1977 - In Jon Barwise (ed.), Handbook of mathematical logic. New York: North-Holland. pp. 821 -- 865.
    Download  
     
    Export citation  
     
    Bookmark   102 citations  
  • The practice of finitism: Epsilon calculus and consistency proofs in Hilbert's program.Richard Zach - 2003 - Synthese 137 (1-2):211 - 259.
    After a brief flirtation with logicism around 1917, David Hilbertproposed his own program in the foundations of mathematics in 1920 and developed it, in concert with collaborators such as Paul Bernays andWilhelm Ackermann, throughout the 1920s. The two technical pillars of the project were the development of axiomatic systems for everstronger and more comprehensive areas of mathematics, and finitisticproofs of consistency of these systems. Early advances in these areaswere made by Hilbert (and Bernays) in a series of lecture courses atthe (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Hilbert's program relativized: Proof-theoretical and foundational reductions.Solomon Feferman - 1988 - Journal of Symbolic Logic 53 (2):364-384.
    Download  
     
    Export citation  
     
    Bookmark   64 citations  
  • Between Vienna and Berlin: The Immediate Reception of Godel's Incompleteness Theorems.Paolo Mancosu - 1999 - History and Philosophy of Logic 20 (1):33-45.
    What were the earliest reactions to Gödel's incompleteness theorems? After a brief summary of previous work in this area I analyse, by means of unpublished archival material, the first reactions in Vienna and Berlin to Gödel's groundbreaking results. In particular, I look at how Carnap, Hempel, von Neumann, Kaufmann, and Chwistek, among others, dealt with the new results.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • (1 other version)A note on the entscheidungsproblem.Alonzo Church - 1936 - Journal of Symbolic Logic 1 (1):40-41.
    Download  
     
    Export citation  
     
    Bookmark   142 citations  
  • Gödel's Theorem in Focus.S. G. Shanker - 1987 - Revue Philosophique de la France Et de l'Etranger 182 (2):253-255.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Die Widerspruchsfreiheit der reinen Zahlentheorie.Gerhard Gentzen - 1936 - Journal of Symbolic Logic 1 (2):75-75.
    Download  
     
    Export citation  
     
    Bookmark   98 citations  
  • Systems of logic based on ordinals..Alan Turing - 1939 - London,: Printed by C.F. Hodgson & son.
    Download  
     
    Export citation  
     
    Bookmark   102 citations  
  • (1 other version)Transfinite recursive progressions of axiomatic theories.Solomon Feferman - 1962 - Journal of Symbolic Logic 27 (3):259-316.
    Download  
     
    Export citation  
     
    Bookmark   109 citations  
  • Reflections on Kurt Godel.Stewart Shapiro - 1991 - Philosophical Review 100 (1):130.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Gödel's Life and Work.Solomon Feferman - 1990 - Journal of Symbolic Logic 55 (1):340-341.
    Download  
     
    Export citation  
     
    Bookmark   3 citations