Switch to: References

Citations of:

Reflections on Kurt Gödel

Bradford (1990)

Add citations

You must login to add citations.
  1. A metaphysical foundation for mathematical philosophy.Wójtowicz Krzysztof & Skowron Bartłomiej - 2022 - Synthese 200 (4):1-28.
    Although mathematical philosophy is flourishing today, it remains subject to criticism, especially from non-analytical philosophers. The main concern is that even if formal tools serve to clarify reasoning, they themselves contribute nothing new or relevant to philosophy. We defend mathematical philosophy against such concerns here by appealing to its metaphysical foundations. Our thesis is that mathematical philosophy can be founded on the phenomenological theory of ideas as developed by Roman Ingarden. From this platonist perspective, the “unreasonable effectiveness of mathematics in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • FILOZOFIJA LOGIKE.Nijaz Ibrulj - 1999 - Sarajevo: Sarajevo Publishing.
    Aktivnost integracije i distribucije prožima cjelokupni čovjekov jezik, mišljenje i djelovanje; njegov praktični i teorijski um, uz pomoć malog broja operacija (konjunkcija, negacija, kvantifikacija) koje čine logičke konstante, sabire i razdjeljuje varijabilne elemente jezika, svijeta i mišljenja u beskonačne konačnosti (skupovi, klase, relacije, atributi) u kojima se koreliraju realne stimulacije i virtualne simulacije, čijom se konstrukcijom, rekonstrukcijom i dekonstrukcijom formiraju i transformiraju "dobro uređene formule" jezičko-gramatičkih i mentalno-psiholoških struktura koje se u svijetu saznanja imenuju pojmom svijeta, pojmom jezika, pojmom duha. (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Constructivity and Computability in Historical and Philosophical Perspective.Jacques Dubucs & Michel Bourdeau (eds.) - 2014 - Dordrecht, Netherland: Springer.
    Ranging from Alan Turing’s seminal 1936 paper to the latest work on Kolmogorov complexity and linear logic, this comprehensive new work clarifies the relationship between computability on the one hand and constructivity on the other. The authors argue that even though constructivists have largely shed Brouwer’s solipsistic attitude to logic, there remain points of disagreement to this day. Focusing on the growing pains computability experienced as it was forced to address the demands of rapidly expanding applications, the content maps the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • CRITIQUE OF IMPURE REASON: Horizons of Possibility and Meaning.Steven James Bartlett - 2021 - Salem, USA: Studies in Theory and Behavior.
    PLEASE NOTE: This is the corrected 2nd eBook edition, 2021. ●●●●● _Critique of Impure Reason_ has now also been published in a printed edition. To reduce the otherwise high price of this scholarly, technical book of nearly 900 pages and make it more widely available beyond university libraries to individual readers, the non-profit publisher and the author have agreed to issue the printed edition at cost. ●●●●● The printed edition was released on September 1, 2021 and is now available through (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Semantics and Truth.Jan Woleński - 2019 - Cham, Switzerland: Springer Verlag.
    The book provides a historical and systematic exposition of the semantic theory of truth formulated by Alfred Tarski in the 1930s. This theory became famous very soon and inspired logicians and philosophers. It has two different, but interconnected aspects: formal-logical and philosophical. The book deals with both, but it is intended mostly as a philosophical monograph. It explains Tarski’s motivation and presents discussions about his ideas as well as points out various applications of the semantic theory of truth to philosophical (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Incompleteness and Computability: An Open Introduction to Gödel's Theorems.Richard Zach - 2019 - Open Logic Project.
    Textbook on Gödel’s incompleteness theorems and computability theory, based on the Open Logic Project. Covers recursive function theory, arithmetization of syntax, the first and second incompleteness theorem, models of arithmetic, second-order logic, and the lambda calculus.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Sets, Logic, Computation: An Open Introduction to Metalogic.Richard Zach - 2019 - Open Logic Project.
    An introductory textbook on metalogic. It covers naive set theory, first-order logic, sequent calculus and natural deduction, the completeness, compactness, and Löwenheim-Skolem theorems, Turing machines, and the undecidability of the halting problem and of first-order logic. The audience is undergraduate students with some background in formal logic.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Role of Intuition in Gödel’s and Robinson’s Points of View.Talia Leven - 2019 - Axiomathes 29 (5):441-461.
    Before Abraham Robinson and Kurt Gödel became familiar with Paul Cohen’s Results, both logicians held a naïve Platonic approach to philosophy. In this paper I demonstrate how Cohen’s results influenced both of them. Robinson declared himself a Formalist, while Gödel basically continued to hold onto the old Platonic approach. Why were the reactions of Gödel and Robinson to Cohen’s results so drastically different in spite of the fact that their initial philosophical positions were remarkably similar? I claim that the key (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On causality as the fundamental concept of Gödel’s philosophy.Srećko Kovač - 2020 - Synthese 197 (4):1803-1838.
    This paper proposes a possible reconstruction and philosophical-logical clarification of Gödel's idea of causality as the philosophical fundamental concept. The results are based on Gödel's published and non-published texts (including Max Phil notebooks), and are established on the ground of interconnections of Gödel's dispersed remarks on causality, as well as on the ground of his general philosophical views. The paper is logically informal but is connected with already achieved results in the formalization of a causal account of Gödel's onto-theological theory. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Objectivity of Mathematics.Stewart Shapiro - 2007 - Synthese 156 (2):337-381.
    The purpose of this paper is to apply Crispin Wright’s criteria and various axes of objectivity to mathematics. I test the criteria and the objectivity of mathematics against each other. Along the way, various issues concerning general logic and epistemology are encountered.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • (1 other version)Gödel’s Cantorianism.Claudio Ternullo - 2015 - In E.-M. Engelen (ed.), Kurt Gödel: Philosopher-Scientist. Presses Universitaires de Provence. pp. 417-446.
    Gödel’s philosophical conceptions bear striking similarities to Cantor’s. Although there is no conclusive evidence that Gödel deliberately used or adhered to Cantor’s views, one can successfully reconstruct and see his “Cantorianism” at work in many parts of his thought. In this paper, I aim to describe the most prominent conceptual intersections between Cantor’s and Gödel’s thought, particularly on such matters as the nature and existence of mathematical entities (sets), concepts, Platonism, the Absolute Infinite, the progress and inexhaustibility of mathematics.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Gödel's Incompleteness Theorems.Panu Raatikainen - 2013 - The Stanford Encyclopedia of Philosophy (Winter 2013 Edition), Edward N. Zalta (Ed.).
    Gödel's two incompleteness theorems are among the most important results in modern logic, and have deep implications for various issues. They concern the limits of provability in formal axiomatic theories. The first incompleteness theorem states that in any consistent formal system F within which a certain amount of arithmetic can be carried out, there are statements of the language of F which can neither be proved nor disproved in F. According to the second incompleteness theorem, such a formal system cannot (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Godel Meets Carnap: A Prototypical Discourse on Science and Religion.Alfred Gierer - 1997 - Zygon 32 (2):207-217.
    Modern science, based on the laws of physics, claims validity for all events in space and time. However, it also reveals its own limitations, such as the indeterminacy of quantum physics, the limits of decidability, and, presumably, limits of decodability of the mind-brain relationship. At the philosophical level, these intrinsic limitations allow for different interpretations of the relation between human cognition and the natural order. In particular, modern science may be logically consistent with religious as well as agnostic views of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Gödel and philosophical idealism.Charles Parsons - 2010 - Philosophia Mathematica 18 (2):166-192.
    Kurt Gödel made many affirmations of robust realism but also showed serious engagement with the idealist tradition, especially with Leibniz, Kant, and Husserl. The root of this apparently paradoxical attitude is his conviction of the power of reason. The paper explores the question of how Gödel read Kant. His argument that relativity theory supports the idea of the ideality of time is discussed critically, in particular attempting to explain the assertion that science can go beyond the appearances and ‘approach the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Wittgenstein's inversion of gödel's theorem.Victor Rodych - 1999 - Erkenntnis 51 (2-3):173-206.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Hilbert and set theory.Burton Dreben & Akihiro Kanamori - 1997 - Synthese 110 (1):77-125.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Wittgenstein and Gödel: An Attempt to Make ‘Wittgenstein’s Objection’ Reasonable†.Timm Lampert - 2018 - Philosophia Mathematica 26 (3):324-345.
    According to some scholars, such as Rodych and Steiner, Wittgenstein objects to Gödel’s undecidability proof of his formula $$G$$, arguing that given a proof of $$G$$, one could relinquish the meta-mathematical interpretation of $$G$$ instead of relinquishing the assumption that Principia Mathematica is correct. Most scholars agree that such an objection, be it Wittgenstein’s or not, rests on an inadequate understanding of Gödel’s proof. In this paper, I argue that there is a possible reading of such an objection that is, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Gödel’s philosophical program and Husserl’s phenomenology.Xiaoli Liu - 2010 - Synthese 175 (1):33-45.
    Gödel’s philosophical rationalism includes a program for “developing philosophy as an exact science.” Gödel believes that Husserl’s phenomenology is essential for the realization of this program. In this article, by analyzing Gödel’s philosophy of idealism, conceptual realism, and his concept of “abstract intuition,” based on clues from Gödel’s manuscripts, I try to investigate the reasons why Gödel is strongly interested in Husserl’s phenomenology and why his program for an exact philosophy is unfinished. One of the topics that has attracted much (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • ‘Orientation’ and religious discourse.Leslie Armour - 2013 - International Journal of Philosophy and Theology 74 (5):391-409.
    Religious discourse is in some way about the world, but its relation to other kinds of discourse – scientific historical, and moral – is a matter of dispute. Suggestions to avoid conflict with other kinds of discourse – the suggestion that religion invokes a distinct ‘language game’ and the suggestion that it should be taken as ‘basic’ for instance – have not, I argue, been successful. Essentially religion is involved in orienting us to the world and our goals, and orientation (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Cambridge and Vienna: Frank P. Ramsey and the Vienna Circle.Maria Carla Galavotti (ed.) - 2004 - Dordrecht: Springer Verlag.
    The Institute Vienna Circle held a conference in Vienna in 2003, Cambridge and Vienna a?
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Gödel's functional interpretation and its use in current mathematics.Ulrich Kohlenbach - 2008 - Dialectica 62 (2):223–267.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the mathematical nature of logic, featuring P. Bernays and K. Gödel.Oran Magal - unknown
    The paper examines the interrelationship between mathematics and logic, arguing that a central characteristic of each has an essential role within the other. The first part is a reconstruction of and elaboration on Paul Bernays’ argument, that mathematics and logic are based on different directions of abstraction from content, and that mathematics, at its core it is a study of formal structures. The notion of a study of structure is clarified by the examples of Hilbert’s work on the axiomatization of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Some Aspects of Understanding Mathematical Reality: Existence, Platonism, Discovery.Vladimir Drekalović - 2015 - Axiomathes 25 (3):313-333.
    The sum of all objects of a science, the objects’ features and their mutual relations compose the reality described by that sense. The reality described by mathematics consists of objects such as sets, functions, algebraic structures, etc. Generally speaking, the use of terms reality and existence, in relation to describing various objects’ characteristics, usually implies an employment of physical and perceptible attributes. This is not the case in mathematics. Its reality and the existence of its objects, leaving aside its application, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On Logic in the Law: "Something, but not All".Susan Haack - 2007 - Ratio Juris 20 (1):1-31.
    In 1880, when Oliver Wendell Holmes (later to be a Justice of the U.S. Supreme Court) criticized the logical theology of law articulated by Christopher Columbus Langdell (the first Dean of Harvard Law School), neither Holmes nor Langdell was aware of the revolution in logic that had begun, the year before, with Frege's Begriffsschrift. But there is an important element of truth in Holmes's insistence that a legal system cannot be adequately understood as a system of axioms and corollaries; and (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • To and from philosophy — discussions with gödel and Wittgenstein.Hao Wang - 1991 - Synthese 88 (2):229 - 277.
    I propose to sketch my views on several aspects of the philosophy of mathematics that I take to be especially relevant to philosophy as a whole. The relevance of my discussion would, I think, become more evident, if the reader keeps in mind the function of (the philosophy of) mathematics in philosophy in providing us with more transparent aspects of general issues. I shall consider: (1) three familiar examples; (2) logic and our conceptual frame; (3) communal agreement and objective certainty; (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Reasoning, logic and computation.Stewart Shapiro - 1995 - Philosophia Mathematica 3 (1):31-51.
    The idea that logic and reasoning are somehow related goes back to antiquity. It clearly underlies much of the work in logic, as witnessed by the development of computability, and formal and mechanical deductive systems, for example. On the other hand, a platitude is that logic is the study of correct reasoning; and reasoning is cognitive if anything Is. Thus, the relationship between logic, computation, and correct reasoning makes an interesting and historically central case study for mechanism. The purpose of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Gödel, Einstein, Mach: Casting constraints on all-embracing concepts. [REVIEW]Giora Hon - 2004 - Foundations of Science 9 (1):25-64.
    Can a theory turn back, as it were, upon itselfand vouch for its own features? That is, canthe derived elements of a theory be the veryprimitive terms that provide thepresuppositions of the theory? This form of anall-embracing feature assumes a totality inwhich there occurs quantification over thattotality, quantification that is defined bythis very totality. I argue that the Machprinciple exhibits such a feature ofall-embracing nature. To clarify the argument,I distinguish between on the one handcompleteness and on the other wholeness andtotality, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Disturbing, but not surprising: Did Gödel surprise Einstein with a rotating universe and time travel? [REVIEW]Giora Hon - 1996 - Foundations of Physics 26 (4):501-521.
    The question is raised as to the kind of methodology required to deal with foundational issues. A comparative study of the methodologies of Gödel and Einstein reveals some similar traits which reflect a concern with foundational problems. It is claimed that the interest in foundational problems stipulates a certain methodology, namely, the methodology of limiting cases.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Time in philosophy and in physics: From Kant and Einstein to gödel.Hao Wang - 1995 - Synthese 102 (2):215 - 234.
    The essay centers on Gödel's views on the place of our intuitive concept of time in philosophy and in physics. It presents my interpretation of his work on the theory of relativity, his observations on the relationship between Einstein's theory and Kantian philosophy, as well as some of the scattered remarks in his conversations with me in the seventies — namely, those on the philosophies of Leibniz, Hegel and Husserl — as a successor of Kant — in relation to their (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Carnap, completeness, and categoricity:The gabelbarkeitssatz OF 1928. [REVIEW]S. Awodey & A. W. Carus - 2001 - Erkenntnis 54 (2):145-172.
    In 1929 Carnap gave a paper in Prague on Investigations in General Axiomatics; a briefsummary was published soon after. Its subject lookssomething like early model theory, and the mainresult, called the Gabelbarkeitssatz, appears toclaim that a consistent set of axioms is complete justif it is categorical. This of course casts doubt onthe entire project. Though there is no furthermention of this theorem in Carnap''s publishedwritings, his Nachlass includes a largetypescript on the subject, Investigations inGeneral Axiomatics. We examine this work here,showing (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • How Godel's theorem supports the possibility of machine intelligence.Taner Edis - 1998 - Minds and Machines 8 (2):251-262.
    Gödel's Theorem is often used in arguments against machine intelligence, suggesting humans are not bound by the rules of any formal system. However, Gödelian arguments can be used to support AI, provided we extend our notion of computation to include devices incorporating random number generators. A complete description scheme can be given for integer functions, by which nonalgorithmic functions are shown to be partly random. Not being restricted to algorithms can be accounted for by the availability of an arbitrary random (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Comprehensibility Theorem and the Foundations of Artificial Intelligence.Arthur Charlesworth - 2014 - Minds and Machines 24 (4):439-476.
    Problem-solving software that is not-necessarily infallible is central to AI. Such software whose correctness and incorrectness properties are deducible by agents is an issue at the foundations of AI. The Comprehensibility Theorem, which appeared in a journal for specialists in formal mathematical logic, might provide a limitation concerning this issue and might be applicable to any agents, regardless of whether the agents are artificial or natural. The present article, aimed at researchers interested in the foundations of AI, addresses many questions (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Godel's unpublished papers on foundations of mathematics.W. W. Tatt - 2001 - Philosophia Mathematica 9 (1):87-126.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • On the failure of mathematics' philosophy: Review of P. Maddy, Realism in Mathematics; and C. Chihara, Constructibility and Mathematical Existence.David Charles McCarty - 1993 - Synthese 96 (2):255-291.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Gödel's ‘Disproof’ of the Syntactical Viewpoint.Victor Rodych - 2001 - Southern Journal of Philosophy 39 (4):527-555.
    Download  
     
    Export citation  
     
    Bookmark  
  • The logic of instance ontology.D. W. Mertz - 1999 - Journal of Philosophical Logic 28 (1):81-111.
    An ontology's theory of ontic predication has implications for the concomitant predicate logic. Remarkable in its analytic power for both ontology and logic is the here developed Particularized Predicate Logic (PPL), the logic inherent in the realist version of the doctrine of unit or individuated predicates. PPL, as axiomatized and proven consistent below, is a three-sorted impredicative intensional logic with identity, having variables ranging over individuals x, intensions R, and instances of intensions $R_{i}$ . The power of PPL is illustrated (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Gödel and the concept of meaning in mathematics.Thomas Tymoczko - 1998 - Synthese 114 (1):25-40.
    Download  
     
    Export citation  
     
    Bookmark  
  • Set theory and physics.K. Svozil - 1995 - Foundations of Physics 25 (11):1541-1560.
    Inasmuch as physical theories are formalizable, set theory provides a framework for theoretical physics. Four speculations about the relevance of set theoretical modeling for physics are presented: the role of transcendental set theory (i) in chaos theory, (ii) for paradoxical decompositions of solid three-dimensional objects, (iii) in the theory of effective computability (Church-Turing thesis) related to the possible “solution of supertasks,” and (iv) for weak solutions. Several approaches to set theory and their advantages and disadvatages for physical applications are discussed: (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Gödel, mathematics, and possible worlds.Mark van Atten - 2001 - Axiomathes 12 (3-4):355-363.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Um filósofo da evidência.M. S. Lourenço - 2009 - Disputatio 3 (27):171-183.
    Embora algumas posições filosóficas de Gödel sejam bem conhecidas, como o platonismo, a sua teoria do conhecimento é, em comparação, menos divulgada. A partir do «Problema da Evidência» de Hilbert-Bernays, I, pg. 20 seq., apresento a seguir os traços essenciais da posição de Gödel sobre a caracterização epistemológica da evidência finitista, com especial relevo para a história dos conceitos utilizados.
    Download  
     
    Export citation  
     
    Bookmark  
  • Reflections on Kurt Gödel. [REVIEW]James Franklin - 1991 - History of European Ideas 13 (5):637-638.
    A review of Hao Wang's Reflections on Kurt Goedel, emphasising Goedel's reaction against his Vienna Circle background.
    Download  
     
    Export citation  
     
    Bookmark  
  • The transzendenz of mathematical 'experience'.William Boos - 1998 - Synthese 114 (1):49-98.
    Download  
     
    Export citation  
     
    Bookmark   1 citation