Switch to: Citations

Add references

You must login to add references.
  1. Nominalism through de-nominalization.Agustin Rayo & Stephen Yablo - 2001 - Noûs 35 (1):74–92.
    Download  
     
    Export citation  
     
    Bookmark   139 citations  
  • (1 other version)Where do the natural numbers come from?Harold T. Hodes - 1990 - Synthese 84 (3):347-407.
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • How we learn mathematical language.Vann McGee - 1997 - Philosophical Review 106 (1):35-68.
    Mathematical realism is the doctrine that mathematical objects really exist, that mathematical statements are either determinately true or determinately false, and that the accepted mathematical axioms are predominantly true. A realist understanding of set theory has it that when the sentences of the language of set theory are understood in their standard meaning, each sentence has a determinate truth value, so that there is a fact of the matter whether the cardinality of the continuum is א2 or whether there are (...)
    Download  
     
    Export citation  
     
    Bookmark   100 citations  
  • Logicism and the ontological commitments of arithmetic.Harold T. Hodes - 1984 - Journal of Philosophy 81 (3):123-149.
    Download  
     
    Export citation  
     
    Bookmark   125 citations  
  • What numbers could not be.Paul Benacerraf - 1965 - Philosophical Review 74 (1):47-73.
    Download  
     
    Export citation  
     
    Bookmark   587 citations  
  • (1 other version)XII*—Grundlagen §64.Bob Hale - 1997 - Proceedings of the Aristotelian Society 97 (1):243-262.
    Bob Hale; XII*—Grundlagen §64, Proceedings of the Aristotelian Society, Volume 97, Issue 1, 1 June 1997, Pages 243–262, https://doi.org/10.1111/1467-9264.00015.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Reading the begriffsschrift.George Boolos - 1985 - Mind 94 (375):331-344.
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • (1 other version)Logic, Logic and Logic.George Boolos & Richard C. Jeffrey - 1998 - Studia Logica 66 (3):428-432.
    Download  
     
    Export citation  
     
    Bookmark   165 citations  
  • Word and objects.Agustín Rayo - 2002 - Noûs 36 (3):436–464.
    The aim of this essay is to show that the subject-matter of ontology is richer than one might have thought. Our route will be indirect. We will argue that there are circumstances under which standard first-order regimentation is unacceptable, and that more appropriate varieties of regimentation lead to unexpected kinds of ontological commitment.
    Download  
     
    Export citation  
     
    Bookmark   79 citations  
  • (1 other version)Nominalist platonism.George Boolos - 1985 - Philosophical Review 94 (3):327-344.
    Download  
     
    Export citation  
     
    Bookmark   218 citations  
  • Frege’s Conception of Numbers as Objects.Crispin Wright - 1983 - Critical Philosophy 1 (1):97.
    Download  
     
    Export citation  
     
    Bookmark   340 citations  
  • (1 other version)Book Review. Logic and Arithmetic, Volume I. D Bostock. [REVIEW]Harold Hodes - 1976 - Journal of Philosophy 73 (6):149-57.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Die Grundlagen der Arithmetik. Eine logisch mathematische Untersuchung über den Begriff der Zahl.Gottlob Frege - 1884 - Wittgenstein-Studien 3 (2):993-999.
    Download  
     
    Export citation  
     
    Bookmark   317 citations  
  • (1 other version)Nominalist platonism.George Boolos - 1998 - In Richard Jeffrey (ed.), Logic, Logic, and Logic. Harvard University Press. pp. 73-87.
    Download  
     
    Export citation  
     
    Bookmark   123 citations  
  • Philosophy of Mathematics.Paul Benacerraf & Hilary Putnam - 1985 - Philosophy of Science 52 (3):488-489.
    Download  
     
    Export citation  
     
    Bookmark   95 citations