Switch to: References

Citations of:

Aspects of Incompleteness

Studia Logica 63 (3):438-439 (1999)

Add citations

You must login to add citations.
  1. On a certain fallacy concerning I-am-unprovable sentences.Kaave Lajevardi & Saeed Salehi - manuscript
    We demonstrate that, in itself and in the absence of extra premises, the following argument scheme is fallacious: The sentence A says about itself that it has a property F, and A does in fact have the property F; therefore A is true. We then examine an argument of this form in the informal introduction of Gödel’s classic (1931) and examine some auxiliary premises which might have been at work in that context. Philosophically significant as it may be, that particular (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • There May Be Many Arithmetical Gödel Sentences.Kaave Lajevardi & Saeed Salehi - 2021 - Philosophia Mathematica 29 (2):278–287.
    We argue that, under the usual assumptions for sufficiently strong arithmetical theories that are subject to Gödel’s First Incompleteness Theorem, one cannot, without impropriety, talk about *the* Gödel sentence of the theory. The reason is that, without violating the requirements of Gödel’s theorem, there could be a true sentence and a false one each of which is provably equivalent to its own unprovability in the theory if the theory is unsound.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Relative Interpretations and Substitutional Definitions of Logical Truth and Consequence.Mirko Engler - 2020 - In Martin Blicha & Igor Sedlar (eds.), The Logica Yearbook 2019. College Publications. pp. 33 - 47.
    This paper proposes substitutional definitions of logical truth and consequence in terms of relative interpretations that are extensionally equivalent to the model-theoretic definitions for any relational first-order language. Our philosophical motivation to consider substitutional definitions is based on the hope to simplify the meta-theory of logical consequence. We discuss to what extent our definitions can contribute to that.
    Download  
     
    Export citation  
     
    Bookmark  
  • Reflection ranks and ordinal analysis.Fedor Pakhomov & James Walsh - 2021 - Journal of Symbolic Logic 86 (4):1350-1384.
    It is well-known that natural axiomatic theories are well-ordered by consistency strength. However, it is possible to construct descending chains of artificial theories with respect to consistency strength. We provide an explanation of this well-orderedness phenomenon by studying a coarsening of the consistency strength order, namely, the$\Pi ^1_1$reflection strength order. We prove that there are no descending sequences of$\Pi ^1_1$sound extensions of$\mathsf {ACA}_0$in this ordering. Accordingly, we can attach a rank in this order, which we call reflection rank, to any$\Pi (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Semantics and Truth.Jan Woleński - 2019 - Cham, Switzerland: Springer Verlag.
    The book provides a historical and systematic exposition of the semantic theory of truth formulated by Alfred Tarski in the 1930s. This theory became famous very soon and inspired logicians and philosophers. It has two different, but interconnected aspects: formal-logical and philosophical. The book deals with both, but it is intended mostly as a philosophical monograph. It explains Tarski’s motivation and presents discussions about his ideas as well as points out various applications of the semantic theory of truth to philosophical (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The Implicit Commitment of Arithmetical Theories and Its Semantic Core.Carlo Nicolai & Mario Piazza - 2019 - Erkenntnis 84 (4):913-937.
    According to the implicit commitment thesis, once accepting a mathematical formal system S, one is implicitly committed to additional resources not immediately available in S. Traditionally, this thesis has been understood as entailing that, in accepting S, we are bound to accept reflection principles for S and therefore claims in the language of S that are not derivable in S itself. It has recently become clear, however, that such reading of the implicit commitment thesis cannot be compatible with well-established positions (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Neo-Logicism and Its Logic.Panu Raatikainen - 2020 - History and Philosophy of Logic 41 (1):82-95.
    The rather unrestrained use of second-order logic in the neo-logicist program is critically examined. It is argued in some detail that it brings with it genuine set-theoretical existence assumptions and that the mathematical power that Hume’s Principle seems to provide, in the derivation of Frege’s Theorem, comes largely from the ‘logic’ assumed rather than from Hume’s Principle. It is shown that Hume’s Principle is in reality not stronger than the very weak Robinson Arithmetic Q. Consequently, only a few rudimentary facts (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Finitistic Arithmetic and Classical Logic.Mihai Ganea - 2014 - Philosophia Mathematica 22 (2):167-197.
    It can be argued that only the equational theories of some sub-elementary function algebras are finitistic or intuitive according to a certain interpretation of Hilbert's conception of intuition. The purpose of this paper is to investigate the relation of those restricted forms of equational reasoning to classical quantifier logic in arithmetic. The conclusion reached is that Edward Nelson's ‘predicative arithmetic’ program, which makes essential use of classical quantifier logic, cannot be justified finitistically and thus requires a different philosophical foundation, possibly (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Slow consistency.Sy-David Friedman, Michael Rathjen & Andreas Weiermann - 2013 - Annals of Pure and Applied Logic 164 (3):382-393.
    The fact that “natural” theories, i.e. theories which have something like an “idea” to them, are almost always linearly ordered with regard to logical strength has been called one of the great mysteries of the foundation of mathematics. However, one easily establishes the existence of theories with incomparable logical strengths using self-reference . As a result, PA+Con is not the least theory whose strength is greater than that of PA. But still we can ask: is there a sense in which (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Effectively inseparable Boolean algebras in lattices of sentences.V. Yu Shavrukov - 2010 - Archive for Mathematical Logic 49 (1):69-89.
    We show the non-arithmeticity of 1st order theories of lattices of Σ n sentences modulo provable equivalence in a formal theory, of diagonalizable algebras of a wider class of arithmetic theories than has been previously known, and of the lattice of degrees of interpretability over PA. The first two results are applications of Nies’ theorem on the non-arithmeticity of the 1st order theory of the lattice of r.e. ideals on any effectively dense r.e. Boolean algebra. The theorem on degrees of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • In defense of the semantic definition of truth.Jan woleński - 2001 - Synthese 126 (1-2):67 - 90.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Never trust an unsound theory.Christian Bennet & Rasmus Blanck - 2022 - Theoria 88 (5):1053-1056.
    Lajevardi and Salehi, in “There may be many arithmetical Gödel sentences”, argue against the use of the definite article in the expression “the Gödel sentence”, by claiming that any unsound theory has Gödelian sentences with different truth values. We show that their Theorems 1 and 2 are special cases (modulo Löb's theorem and the first incompleteness theorem) of general observations pertaining to fixed points of any formula, and argue that the false sentences of Lajevardi and Salehi are in fact not (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Is the HYPE about strength warranted?Martin Fischer - 2022 - Synthese 200 (3):1-25.
    In comparing classical and non-classical solutions to the semantic paradoxes arguments relying on strength have been influential. In this paper I argue that non-classical solutions should preserve the proof-theoretic strength of classical solutions. Leitgeb’s logic of HYPE is then presented as an interesting possibility to strengthen FDE with a suitable conditional. It is shown that HYPE allows for a non-classical Kripkean theory of truth, called KFL, that is strong enough for the relevant purposes and has additional attractive properties.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Avicenna on Syllogisms Composed of Opposite Premises.Behnam Zolghadr - 2021 - In Mojtaba Mojtahedi, Shahid Rahman & MohammadSaleh Zarepour (eds.), Mathematics, Logic, and their Philosophies: Essays in Honour of Mohammad Ardeshir. Springer. pp. 433-442.
    This article is about Avicenna’s account of syllogisms comprising opposite premises. We examine the applications and the truth conditions of these syllogisms. Finally, we discuss the relation between these syllogisms and the principle of non-contradiction.
    Download  
     
    Export citation  
     
    Bookmark  
  • Gödel’s Incompleteness Theorem and the Anti-Mechanist Argument: Revisited.Yong Cheng - 2020 - Studia Semiotyczne 34 (1):159-182.
    This is a paper for a special issue of Semiotic Studies devoted to Stanislaw Krajewski’s paper. This paper gives some supplementary notes to Krajewski’s on the Anti-Mechanist Arguments based on Gödel’s incompleteness theorem. In Section 3, we give some additional explanations to Section 4–6 in Krajewski’s and classify some misunderstandings of Gödel’s incompleteness theorem related to AntiMechanist Arguments. In Section 4 and 5, we give a more detailed discussion of Gödel’s Disjunctive Thesis, Gödel’s Undemonstrability of Consistency Thesis and the definability (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The ∀∃ theory of peano σ1 sentences.Per Lindström & V. Yu Shavrukov - 2008 - Journal of Mathematical Logic 8 (2):251-280.
    We present a decision procedure for the ∀∃ theory of the lattice of Σ1 sentences of Peano Arithmetic.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Proof theory in philosophy of mathematics.Andrew Arana - 2010 - Philosophy Compass 5 (4):336-347.
    A variety of projects in proof theory of relevance to the philosophy of mathematics are surveyed, including Gödel's incompleteness theorems, conservation results, independence results, ordinal analysis, predicativity, reverse mathematics, speed-up results, and provability logics.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the Depth of Gödel’s Incompleteness Theorems.Yong Cheng - forthcoming - Philosophia Mathematica.
    ABSTRACT We use Gödel’s incompleteness theorems as a case study for investigating mathematical depth. We examine the philosophical question of what the depth of Gödel’s incompleteness theorems consists in. We focus on the methodological study of the depth of Gödel’s incompleteness theorems, and propose three criteria to account for the depth of the incompleteness theorems: influence, fruitfulness, and unity. Finally, we give some explanations for our account of the depth of Gödel’s incompleteness theorems.
    Download  
     
    Export citation  
     
    Bookmark  
  • On Guaspari's problem about partially conservative sentences.Taishi Kurahashi, Yuya Okawa, V. Yu Shavrukov & Albert Visser - 2022 - Annals of Pure and Applied Logic 173 (5):103087.
    Download  
     
    Export citation  
     
    Bookmark  
  • Stable and Unstable Theories of Truth and Syntax.Beau Madison Mount & Daniel Waxman - 2021 - Mind 130 (518):439-473.
    Recent work on formal theories of truth has revived an approach, due originally to Tarski, on which syntax and truth theories are sharply distinguished—‘disentangled’—from mathematical base theories. In this paper, we defend a novel philosophical constraint on disentangled theories. We argue that these theories must be epistemically stable: they must possess an intrinsic motivation justifying no strictly stronger theory. In a disentangled setting, even if the base and the syntax theory are individually stable, they may be jointly unstable. We contend (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On arithmetical completeness of the logic of proofs.Sohei Iwata & Taishi Kurahashi - 2019 - Annals of Pure and Applied Logic 170 (2):163-179.
    Download  
     
    Export citation  
     
    Bookmark  
  • A new model construction by making a detour via intuitionistic theories II: Interpretability lower bound of Feferman's explicit mathematics T 0.Kentaro Sato - 2015 - Annals of Pure and Applied Logic 166 (7-8):800-835.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Rosser-Type Undecidable Sentences Based on Yablo’s Paradox.Taishi Kurahashi - 2014 - Journal of Philosophical Logic 43 (5):999-1017.
    It is widely considered that Gödel’s and Rosser’s proofs of the incompleteness theorems are related to the Liar Paradox. Yablo’s paradox, a Liar-like paradox without self-reference, can also be used to prove Gödel’s first and second incompleteness theorems. We show that the situation with the formalization of Yablo’s paradox using Rosser’s provability predicate is different from that of Rosser’s proof. Namely, by using the technique of Guaspari and Solovay, we prove that the undecidability of each instance of Rosser-type formalizations of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Truth and Consistency.Jan Woleński - 2010 - Axiomathes 20 (2-3):347-355.
    This paper investigates relations between truth and consistency. The basic intuition is that truth implies consistency, but the reverse dependence fails. However, this simple account leads to some troubles, due to some metalogical results, in particular the Gödel-Malcev completeness theorem. Thus, a more advanced analysis is required. This is done by employing the concept of ω-consistency and ω-inconsistency. Both concepts motivate that the concept of the standard truth should be introduced as well. The results are illustrated by an interpretation of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Recursive Functions and Metamathematics: Problems of Completeness and Decidability, Gödel's Theorems.Rod J. L. Adams & Roman Murawski - 1999 - Dordrecht, Netherland: Springer Verlag.
    Traces the development of recursive functions from their origins in the late nineteenth century to the mid-1930s, with particular emphasis on the work and influence of Kurt Gödel.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Empiricism, Probability, and Knowledge of Arithmetic.Sean Walsh - 2014 - Journal of Applied Logic 12 (3):319–348.
    The topic of this paper is our knowledge of the natural numbers, and in particular, our knowledge of the basic axioms for the natural numbers, namely the Peano axioms. The thesis defended in this paper is that knowledge of these axioms may be gained by recourse to judgements of probability. While considerations of probability have come to the forefront in recent epistemology, it seems safe to say that the thesis defended here is heterodox from the vantage point of traditional philosophy (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • In memoriam: Per Lindström.Jouko Väänänen & Dag Westerståhl - 2010 - Theoria 76 (2):100-107.
    Download  
     
    Export citation  
     
    Bookmark  
  • The early history of formal diagonalization.C. Smoryński - 2023 - Logic Journal of the IGPL 31 (6):1203-1224.
    In Honour of John Crossley’s 85th Birthday.
    Download  
     
    Export citation  
     
    Bookmark  
  • Variants of Kreisel’s Conjecture on a New Notion of Provability.Paulo Guilherme Santos & Reinhard Kahle - 2021 - Bulletin of Symbolic Logic 27 (4):337-350.
    Kreisel’s conjecture is the statement: if, for all$n\in \mathbb {N}$,$\mathop {\text {PA}} \nolimits \vdash _{k \text { steps}} \varphi (\overline {n})$, then$\mathop {\text {PA}} \nolimits \vdash \forall x.\varphi (x)$. For a theory of arithmeticT, given a recursive functionh,$T \vdash _{\leq h} \varphi $holds if there is a proof of$\varphi $inTwhose code is at most$h(\#\varphi )$. This notion depends on the underlying coding.${P}^h_T(x)$is a predicate for$\vdash _{\leq h}$inT. It is shown that there exist a sentence$\varphi $and a total recursive functionhsuch that$T\vdash (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the logic of reducibility: Axioms and examples. [REVIEW]Karl-Georg Niebergall - 2000 - Erkenntnis 53 (1-2):27-61.
    This paper is an investigation into what could be a goodexplication of ``theory S is reducible to theory T''''. Ipresent an axiomatic approach to reducibility, which is developedmetamathematically and used to evaluate most of the definitionsof ``reducible'''' found in the relevant literature. Among these,relative interpretability turns out to be most convincing as ageneral reducibility concept, proof-theoreticalreducibility being its only serious competitor left. Thisrelation is analyzed in some detail, both from the point of viewof the reducibility axioms and of modal logic.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Interpretability in reflexive theories - a survey.Per Lindström - 1997 - Theoria 63 (3):182-209.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Henkin sentences and local reflection principles for Rosser provability.Taishi Kurahashi - 2016 - Annals of Pure and Applied Logic 167 (2):73-94.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The interpretability logic of all reasonable arithmetical theories.Joost J. Joosten & Albert Visser - 2000 - Erkenntnis 53 (1-2):3-26.
    This paper is a presentation of astatus quæstionis, to wit of the problemof the interpretability logic of all reasonablearithmetical theories.We present both the arithmetical side and themodal side of the question.Dedicated to Dick de Jongh on the occasion of his 60th birthday.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Relative truth definability of axiomatic truth theories.Kentaro Fujimoto - 2010 - Bulletin of Symbolic Logic 16 (3):305-344.
    The present paper suggests relative truth definability as a tool for comparing conceptual aspects of axiomatic theories of truth and gives an overview of recent developments of axiomatic theories of truth in the light of it. We also show several new proof-theoretic results via relative truth definability including a complete answer to the conjecture raised by Feferman in [13].
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Slow reflection.Anton Freund - 2017 - Annals of Pure and Applied Logic 168 (12):2103-2128.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Minimal truth and interpretability.Martin Fischer - 2009 - Review of Symbolic Logic 2 (4):799-815.
    In this paper we will investigate different axiomatic theories of truth that are minimal in some sense. One criterion for minimality will be conservativity over Peano Arithmetic. We will then give a more fine-grained characterization by investigating some interpretability relations. We will show that disquotational theories of truth, as well as compositional theories of truth with restricted induction are relatively interpretable in Peano Arithmetic. Furthermore, we will give an example of a theory of truth that is a conservative extension of (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations