Switch to: Citations

Add references

You must login to add references.
  1. On the Plurality of Worlds.David K. Lewis - 1986 - Malden, Mass.: Wiley-Blackwell.
    This book is a defense of modal realism; the thesis that our world is but one of a plurality of worlds, and that the individuals that inhabit our world are only a few out of all the inhabitants of all the worlds. Lewis argues that the philosophical utility of modal realism is a good reason for believing that it is true.
    Download  
     
    Export citation  
     
    Bookmark   2381 citations  
  • Unified dynamics for microscopic and macroscopic systems.GianCarlo Ghirardi, Alberto Rimini & Tullio Weber - 1986 - Physical Review D 34 (D):470–491.
    Download  
     
    Export citation  
     
    Bookmark   407 citations  
  • The Quantum Mechanics of Minds and Worlds.Jeffrey Alan Barrett - 1999 - Oxford, GB: Oxford University Press.
    Jeffrey Barrett presents the most comprehensive study yet of a problem that has puzzled physicists and philosophers since the 1930s.
    Download  
     
    Export citation  
     
    Bookmark   133 citations  
  • Mind, Brain and the Quantum: The Compound "I".Michael Lockwood - 1989 - New York, NY, USA: Oxford University Press.
    Download  
     
    Export citation  
     
    Bookmark   122 citations  
  • Interpreting the many-worlds interpretation.David Albert & Barry Loewer - 1988 - Synthese 77 (November):195-213.
    Download  
     
    Export citation  
     
    Bookmark   192 citations  
  • Everett and structure.David Wallace - 2003 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 34 (1):87-105.
    I address the problem of indefiniteness in quantum mechanics: the problem that the theory, without changes to its formalism, seems to predict that macroscopic quantities have no definite values. The Everett interpretation is often criticised along these lines, and I shall argue that much of this criticism rests on a false dichotomy: that the macroworld must either be written directly into the formalism or be regarded as somehow illusory. By means of analogy with other areas of physics, I develop the (...)
    Download  
     
    Export citation  
     
    Bookmark   137 citations  
  • Quantum Theory of Probability and Decisions.David Deutsch - 1999 - Proceedings of the Royal Society of London:3129--37.
    Download  
     
    Export citation  
     
    Bookmark   187 citations  
  • Time, quantum mechanics, and probability.Simon Saunders - 1998 - Synthese 114 (3):373-404.
    A variety of ideas arising in decoherence theory, and in the ongoing debate over Everett's relative-state theory, can be linked to issues in relativity theory and the philosophy of time, specifically the relational theory of tense and of identity over time. These have been systematically presented in companion papers (Saunders 1995; 1996a); in what follows we shall consider the same circle of ideas, but specifically in relation to the interpretation of probability, and its identification with relations in the Hilbert Space (...)
    Download  
     
    Export citation  
     
    Bookmark   114 citations  
  • (2 other versions)Remarks on the Mind-Body Question.E. Wigner - 2003 - In John Heil (ed.), Philosophy of Mind: A Guide and Anthology. New York: Oxford University Press.
    Download  
     
    Export citation  
     
    Bookmark   142 citations  
  • Branching and Uncertainty.Simon Saunders & David Wallace - 2008 - British Journal for the Philosophy of Science 59 (3):293-305.
    Following Lewis, it is widely held that branching worlds differ in important ways from diverging worlds. There is, however, a simple and natural semantics under which ordinary sentences uttered in branching worlds have much the same truth values as they conventionally have in diverging worlds. Under this semantics, whether branching or diverging, speakers cannot say in advance which branch or world is theirs. They are uncertain as to the outcome. This same semantics ensures the truth of utterances typically made about (...)
    Download  
     
    Export citation  
     
    Bookmark   89 citations  
  • (1 other version)Against ”Measurement'.J. S. Bell - 2004 - In John Stewart Bell (ed.), Speakable and unspeakable in quantum mechanics: collected papers on quantum philosophy. New York: Cambridge University Press. pp. 213--231.
    Download  
     
    Export citation  
     
    Bookmark   110 citations  
  • (1 other version)Quantum Theory and Measurement.John Archibald Wheeler & Wojciech Hubert Zurek - 1985 - Philosophy of Science 52 (3):480-481.
    Download  
     
    Export citation  
     
    Bookmark   113 citations  
  • Many-worlds interpretation of quantum mechanics.Lev Vaidman - 2008 - Stanford Encyclopedia of Philosophy.
    The Many-Worlds Interpretation (MWI) is an approach to quantum mechanics according to which, in addition to the world we are aware of directly, there are many other similar worlds which exist in parallel at the same space and time. The existence of the other worlds makes it possible to remove randomness and action at a distance from quantum theory and thus from all physics.
    Download  
     
    Export citation  
     
    Bookmark   74 citations  
  • On schizophrenic experiences of the neutron or why we should believe in the many‐worlds interpretation of quantum theory.Lev Vaidman - 1990 - International Studies in the Philosophy of Science 12 (3):245 – 261.
    This is a philosophical paper in favor of the many-worlds interpretation of quantum theory. The necessity of introducing many worlds is explained by analyzing a neutron interference experiment. The concept of the “measure of existence of a world” is introduced and some difficulties with the issue of probability in the framework of the MWI are resolved.
    Download  
     
    Export citation  
     
    Bookmark   94 citations  
  • The Many-Worlds Interpretation of Quantum Mechanics.B. DeWitt & N. Graham (eds.) - 1973 - Princeton UP.
    Download  
     
    Export citation  
     
    Bookmark   229 citations  
  • Time, quantum mechanics, and decoherence.Simon Saunders - 1995 - Synthese 102 (2):235 - 266.
    State-reduction and the notion of actuality are compared to passage through time and the notion of the present; already in classical relativity the latter give rise to difficulties. The solution proposed here is to treat both tense and value-definiteness as relational properties or facts as relations; likewise the notions of change and probability. In both cases essential characteristics are absent: temporal relations are tenselessly true; probabilistic relations are deterministically true. The basic ideas go back to Everett, although the technical development (...)
    Download  
     
    Export citation  
     
    Bookmark   66 citations  
  • Epistemology quantized: Circumstances in which we should come to believe in the Everett interpretation.David Wallace - 2006 - British Journal for the Philosophy of Science 57 (4):655-689.
    I consider exactly what is involved in a solution to the probability problem of the Everett interpretation, in the light of recent work on applying considerations from decision theory to that problem. I suggest an overall framework for understanding probability in a physical theory, and conclude that this framework, when applied to the Everett interpretation, yields the result that that interpretation satisfactorily solves the measurement problem. Introduction What is probability? 2.1 Objective probability and the Principal Principle 2.2 Three ways of (...)
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • (1 other version)Measurement outcomes and probability in Everettian quantum mechanics.David J. Baker - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (1):153-169.
    The decision-theoretic account of probability in the Everett or many-worlds interpretation, advanced by David Deutsch and David Wallace, is shown to be circular. Talk of probability in Everett presumes the existence of a preferred basis to identify measurement outcomes for the probabilities to range over. But the existence of a preferred basis can only be established by the process of decoherence, which is itself probabilistic.
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Decoherence, relative states, and evolutionary adaptation.Simon Saunders - 1993 - Foundations of Physics 23 (12):1553-1585.
    We review the decoherent histories approach to the interpretation of quantum mechanics. The Everett relative-state theory is reformulated in terms of decoherent histories. A model of evolutionary adaptation is shown to imply decoherence. A general interpretative framework is proposed: probability and value-definiteness are to have a similar status to the attribution of tense in classical spacetime theory.
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • Comment on Lockwood.David Deutsch - 1996 - British Journal for the Philosophy of Science 47 (2):222-228.
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • (1 other version)Quantum probability and many worlds.Meir Hemmo - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):333-350.
    We discuss the meaning of probabilities in the many worlds interpretation of quantum mechanics. We start by presenting very briefly the many worlds theory, how the problem of probability arises, and some unsuccessful attempts to solve it in the past. Then we criticize a recent attempt by Deutsch to derive the quantum mechanical probabilities from the nonprobabilistic parts of quantum mechanics and classical decision theory. We further argue that the Born probability does not make sense even as an additional probability (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • (1 other version)Uncertainty and probability for branching selves.Peter J. Lewis - 2006 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (1):1-14.
    Everettian accounts of quantum mechanics entail that people branch; every possible result of a measurement actually occurs, and I have one successor for each result. Is there room for probability in such an account? The prima facie answer is no; there are no ontic chances here, and no ignorance about what will happen. But since any adequate quantum mechanical theory must make probabilistic predictions, much recent philosophical labor has gone into trying to construct an account of probability for branching selves. (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • (1 other version)Measurement outcomes and probability in Everettian quantum mechanics.David Baker - 2006 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (1):153-169.
    The decision-theoretic account of probability in the Everett or many-worlds interpretation, advanced by David Deutsch and David Wallace, is shown to be circular. Talk of probability in Everett presumes the existence of a preferred basis to identify measurement outcomes for the probabilities to range over. But the existence of a preferred basis can only be established by the process of decoherence, which is itself probabilistic.
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • (1 other version)On the Everettian epistemic problem.Hilary Greaves - 2006 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (1):120-152.
    Recent work in the Everett interpretation has suggested that the problem of probability can be solved by understanding probability in terms of rationality. However, there are *two* problems relating to probability in Everett --- one practical, the other epistemic --- and the rationality-based program *directly* addresses only the practical problem. One might therefore worry that the problem of probability is only `half solved' by this approach. This paper aims to dispel that worry: a solution to the epistemic problem follows from (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Derivation of the born rule from operational assumptions.Simon Saunders - manuscript
    The Born rule is derived from operational assumptions, together with assumptions of quantum mechanics that concern only the deterministic development of the state. Unlike Gleason’s theorem, the argument applies even if probabilities are de…ned for only a single resolution of the identity, so it applies to a variety of foundational approaches to quantum mechanics. It also provides a probability rule for state spaces that are not Hilbert spaces.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • (1 other version)On the Everettian Epistemic Problem.Hilary Greaves - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (1):120-152.
    Recent work in the Everett interpretation has suggested that the problem of probability can be solved by understanding probability in terms of rationality. However, there are *two* problems relating to probability in Everett --- one practical, the other epistemic --- and the rationality-based program *directly* addresses only the practical problem. One might therefore worry that the problem of probability is only `half solved' by this approach. This paper aims to dispel that worry: a solution to the epistemic problem follows from (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Quantum probability and decision theory, revisited [2002 online-only paper].David Wallace - 2002
    An extended analysis is given of the program, originally suggested by Deutsch, of solving the probability problem in the Everett interpretation by means of decision theory. Deutsch's own proof is discussed, and alternatives are presented which are based upon different decision theories and upon Gleason's Theorem. It is argued that decision theory gives Everettians most or all of what they need from `probability'. Contact is made with Lewis's Principal Principle linking subjective credence with objective chance: an Everettian Principal Principle is (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Time, quantum mechanics, and tense.Simon Saunders - 1996 - Synthese 107 (1):19 - 53.
    The relational approach to tense holds that the now, passage, and becoming are to be understood in terms of relations between events. The debate over the adequacy of this framework is illustrated by a comparative study of the sense in which physical theories, (in)deterministic and (non)relativistic, can lend expression to the metaphysics at issue. The objective is not to settle the matter, but to clarify the nature of this metaphysics and to establish that the same issues are at stake in (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • (1 other version)Uncertainty and probability for branching selves.Peter J. Lewis - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (1):1-14.
    Everettian accounts of quantum mechanics entail that people branch; every possible result of a measurement actually occurs, and I have one successor for each result. Is there room for probability in such an account? The prima facie answer is no; there are no ontic chances here, and no ignorance about what will happen. But since any adequate quantum mechanical theory must make probabilistic predictions, much recent philosophical labor has gone into trying to construct an account of probability for branching selves. (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • The measurement of relative frequency.Neill Graham - 1973 - In B. DeWitt & N. Graham (eds.), The Many-Worlds Interpretation of Quantum Mechanics. Princeton UP. pp. 1--229.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • What is Probability?Simon Saunders - 2004 - Arxiv Preprint Quant-Ph/0412194.
    Probabilities may be subjective or objective; we are concerned with both kinds of probability, and the relationship between them. The fundamental theory of objective probability is quantum mechanics: it is argued that neither Bohr's Copenhagen interpretation, nor the pilot-wave theory, nor stochastic state-reduction theories, give a satisfactory answer to the question of what objective probabilities are in quantum mechanics, or why they should satisfy the Born rule; nor do they give any reason why subjective probabilities should track objective ones. But (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • (1 other version)Quantum probability and many worlds.Meir Hemmo & Itamar Pitowsky - 2006 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):333-350.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Delocalized Properties in the Modal Interpretation of a Continuous Model of Decoherence.Guido Bacciagaluppi - 2000 - Foundations of Physics 30 (9):1431-1444.
    I investigate the character of the definite properties defined by the Basic Rule in the Vermaas and Dieks' (1995) version of the modal interpretation of quantum mechanics, specifically for the case of the continuous model of decoherence by Joos and Zeh (1985). While this model suggests that the characteristic length that might be associated with the localisation of an individual system is the coherence length of the state (which converges rapidly to the thermal de Broglie wavelength), I show in an (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • The theory of the universal wave function.Hugh Everett Iii - 1973 - In B. DeWitt & N. Graham (eds.), The Many-Worlds Interpretation of Quantum Mechanics. Princeton UP. pp. 3.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • (2 other versions)Die naturphilosophischen Grundlagen der Quantenmechanik.Grete Hermann - 1940 - Journal of Unified Science (Erkenntnis) 8 (5):379-383.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Can the statistical postulate of quantum theory be derived?—A critique of the many-universes interpretation.L. E. Ballentine - 1973 - Foundations of Physics 3 (2):229-240.
    The attempt to derive (rather than assume) the statistical postulate of quantum theory from the many-universes interpretation of Everett and De Witt is analyzed The many-universes interpretation is found to be neither necessary nor sufficient for the task.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • On the strong law of large numbers in quantum probability theory.W. Ochs - 1977 - Journal of Philosophical Logic 6 (1):473 - 480.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Symmetry-breaking vacuum and state vector reduction.H. D. Zeh - 1975 - Foundations of Physics 5 (2):371-373.
    It is argued by means of analogy with certain irreversible processes that a symmetry-violating vacuum need not necessarily be explained by a special cosmic initial condition.
    Download  
     
    Export citation  
     
    Bookmark   2 citations