Switch to: Citations

References in:

Frege’s philosophy of geometry

Synthese 196 (3):929-971 (2019)

Add references

You must login to add references.
  1. (2 other versions)Kritik der Reinen Vernunft.Immanuel Kant (ed.) - 1997 - Suhrkamp.
    Die von Jens Timmermann besorgte Neuausgabe innerhalb der Philosophischen Bibliothek bietet den vollständigen Wortlaut der beiden Originalausgaben von 1781 und 1787. Der Kantische Text wurde unter Wahrung der Interpunktion und sprachlicher Eigenheiten sehr behutsam an die heutigen orthographischen Regeln angeglichen. Die semantisch bedeutenden Korrekturvorschläge späterer Herausgeber (nicht nur der Akademie-Ausgabe) sind, wo sie nicht in den Text Aufnahme gefunden haben, am Fuß der Seite verzeichnet. Alle wesentlichen Unterschiede zwischen den Originalausgaben sind durch Kursivdruck hervorgehoben, größere Abweichungen ganzer Textstücke - etwa (...)
    Download  
     
    Export citation  
     
    Bookmark   642 citations  
  • (1 other version)Grundlagen der Arithmetik: Studienausgabe mit dem Text der Centenarausgabe.Gottlob Frege - 1884 - Breslau: Wilhelm Koebner Verlag.
    Die Grundlagen gehören zu den klassischen Texten der Sprachphilosophie, Logik und Mathematik. Frege stützt sein Programm einer Begründung von Arithmetik und Analysis auf reine Logik, indem er die natürlichen Zahlen als bestimmte Begriffsumfänge definiert. Die philosophische Fundierung des Fregeschen Ansatzes bilden erkenntnistheoretische und sprachphilosophische Analysen und Begriffserklärungen. Studienausgabe aufgrund der textkritisch herausgegebenen Jubiläumsausgabe (Centenarausgabe). Mit Einleitung, Anmerkungen, Literaturverzeichnis und Namenregister.
    Download  
     
    Export citation  
     
    Bookmark   311 citations  
  • (1 other version)Grundlagen der Arithmetik: Studienausgabe mit dem Text der Centenarausgabe.Gottlob Frege - 1988 - Meiner, F.
    Die Grundlagen gehören zu den klassischen Texten der Sprachphilosophie, Logik und Mathematik. Frege stützt sein Programm einer Begründung von Arithmetik und Analysis auf reine Logik, indem er die natürlichen Zahlen als bestimmte Begriffsumfänge definiert. Die philosophische Fundierung des Fregeschen Ansatzes bilden erkenntnistheoretische und sprachphilosophische Analysen und Begriffserklärungen. Studienausgabe aufgrund der textkritisch herausgegebenen Jubiläumsausgabe (Centenarausgabe). Mit Einleitung, Anmerkungen, Literaturverzeichnis und Namenregister.
    Download  
     
    Export citation  
     
    Bookmark   255 citations  
  • (1 other version)The Interpretation of Fregeʼs Philosophy.Michael Dummett - 1980 - Cambridge: Harvard University Press.
    Download  
     
    Export citation  
     
    Bookmark   175 citations  
  • Grundgesetze der Arithmetik.Gottlob Frege - 1893 - Hildesheim,: G.Olms.
    Download  
     
    Export citation  
     
    Bookmark   147 citations  
  • Die Grundlagen der Arithmetik. Eine logisch mathematische Untersuchung über den Begriff der Zahl.Gottlob Frege - 1884 - Wittgenstein-Studien 3 (2):993-999.
    Download  
     
    Export citation  
     
    Bookmark   328 citations  
  • Begriffsschrift und andere Aufsätze: Mit E. Husserls und H. Scholz' Anmerkungen herausgegeben von Ignacio Angelelli.Gottlob Frege & Ignacio Angelelli - 2014 - Georg Olms Verlag.
    Dieser Band enthält die vier Arbeiten Freges: Begriffsschrift, eine der arithmetischen nachgebildeten Formelsprache, 1879; Anwendungen der Begriffsschrift, 1879; Über den Briefwechsel Leibnizens und Huggens mit Papin, 1881; Über den Zweck der Begriffsschrift, 1883; Über die wissenschaftliche Berechtigung einer Begriffsschrift, 1882. Frege's research work in the field of mathematical logic is of great importance for the present-day analytic philosophy. We actually owe to Frege a great amount of basical insight and exemplary research, which set up a new standard also in other (...)
    Download  
     
    Export citation  
     
    Bookmark   54 citations  
  • Philosophiae Naturalis Principia Mathematica.Isaac Newton - 1726 - Filozofia 56 (5):341-354.
    Download  
     
    Export citation  
     
    Bookmark   198 citations  
  • Kleine Schriften.Gottlob Frege & Ignacio Angelelli - 1967 - G. Olms.
    Download  
     
    Export citation  
     
    Bookmark   70 citations  
  • Begriffsschrift.Gottlob Frege - 1967 - In Jean Van Heijenoort (ed.), From Frege to Gödel. Cambridge,: Harvard University Press. pp. 1-83.
    Download  
     
    Export citation  
     
    Bookmark   158 citations  
  • Kants theorie der erfahrung.Hermann Cohen - 1925 - Berlin: B. Cassirer.
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • “Das” Prinzip der Infinitesimal-Methode und seine Geschichte: ein Kapitel zur Grundlegung der Erkenntniskritik.Hermann Cohen - 2013 - Berlin: Dümmler.
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • (1 other version)The Interpretation of Frege's Philosophy.Michael Dummett - 1984 - Philosophical Quarterly 34 (136):402-414.
    Download  
     
    Export citation  
     
    Bookmark   147 citations  
  • The Euclidean Diagram.Kenneth Manders - 2008 - In Paolo Mancosu (ed.), The Philosophy of Mathematical Practice. Oxford, England: Oxford University Press. pp. 80--133.
    This chapter gives a detailed study of diagram-based reasoning in Euclidean plane geometry (Books I, III), as well as an exploration how to characterise a geometric practice. First, an account is given of diagram attribution: basic geometrical claims are classified as exact (equalities, proportionalities) or co-exact (containments, contiguities); exact claims may only be inferred from prior entries in the demonstration text, but co-exact claims may be asserted based on what is seen in the diagram. Diagram control by constructions is necessary (...)
    Download  
     
    Export citation  
     
    Bookmark   98 citations  
  • (1 other version)The Interpretation of Frege's Philosophy.Michael Dummett - 1981 - Erkenntnis 20 (2):243-251.
    Download  
     
    Export citation  
     
    Bookmark   142 citations  
  • Frege’s Conception of Logic.Patricia Blanchette - 2012 - Oxford, England: Oup Usa.
    In Frege's Conception of Logic Patricia A. Blanchette explores the relationship between Gottlob Frege's understanding of conceptual analysis and his understanding of logic.
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Frege's theorem.Richard G. Heck - 2011 - New York: Clarendon Press.
    The book begins with an overview that introduces the Theorem and the issues surrounding it, and explores how the essays that follow contribute to our understanding of those issues.
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Visual Thinking in Mathematics: An Epistemological Study.Marcus Giaquinto - 2007 - Oxford, England: Oxford University Press.
    Marcus Giaquinto presents an investigation into the different kinds of visual thinking involved in mathematical thought, drawing on work in cognitive psychology, philosophy, and mathematics. He argues that mental images and physical diagrams are rarely just superfluous aids: they are often a means of discovery, understanding, and even proof.
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • (1 other version)Frege’s Theorem: An Introduction.Richard G. Heck - 1999 - The Harvard Review of Philosophy 7 (1):56-73.
    A brief, non-technical introduction to technical and philosophical aspects of Frege's philosophy of arithmetic. The exposition focuses on Frege's Theorem, which states that the axioms of arithmetic are provable, in second-order logic, from a single non-logical axiom, "Hume's Principle", which itself is: The number of Fs is the same as the number of Gs if, and only if, the Fs and Gs are in one-one correspondence.
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Nachgelassene Schriften.R. H. Stoothoff - 1971 - Philosophical Quarterly 21 (82):77.
    Download  
     
    Export citation  
     
    Bookmark   87 citations  
  • Frege: The Pure Business of Being True, by Charles Travis.Michael Potter - 2024 - Mind 133 (532):1175-1180.
    Travis is evidently a self-conscious prose stylist, by which I mean that he pays attention to the style of his prose, not that this style is worth emulating. On.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Philosophie der Raum-Zeit-Lehre.Hans Reichenbach - 1928 - Berlin und Leipzig,: De Gruyter.
    Keine ausführliche Beschreibung für "Philosophie der Raum-Zeit-Lehre" verfügbar.
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • (1 other version)Nachgelassene Schriften.Gotlob Frege - 1970 - Synthese 21 (3):488-493.
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  • (1 other version)Philosophy of Geometry from Riemann to Poincaré.Roberto Torretti - 1978 - Revue de Métaphysique et de Morale 88 (4):565-571.
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • Philosophy of Geometry from Riemann to Poincaré.Nicholas Griffin - 1981 - Philosophical Quarterly 31 (125):374.
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • Kant's theory of geometry.Michael Friedman - 1985 - Philosophical Review 94 (4):455-506.
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Frege and Hilbert on Consistency.Patricia A. Blanchette - 1996 - Journal of Philosophy 93 (7):317-336.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Frege: The Royal road from geometry.Mark Wilson - 1992 - Noûs 26 (2):149-180.
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Diagram-Based Geometric Practice.Kenneth Manders - 2008 - In Paolo Mancosu (ed.), The Philosophy of Mathematical Practice. Oxford, England: Oxford University Press. pp. 65--79.
    This chapter provides a survey of issues about diagrams in traditional geometrical reasoning. After briefly refuting several common philosophical objections, and giving a sketch of diagram-based reasoning practice in Euclidean plane geometry, discussion focuses first on problems of diagram sensitivity, and then on the relationship between uniform treatment and geometrical generality. Here, one finds a balance between representationally enforced unresponsiveness (to differences among diagrams) and the intellectual agent's contribution to such unresponsiveness that is somewhat different from what one has come (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Frege's epistemology.Philip Kitcher - 1979 - Philosophical Review 88 (2):235-262.
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Pasch’s philosophy of mathematics.Dirk Schlimm - 2010 - Review of Symbolic Logic 3 (1):93-118.
    Moritz Pasch (1843ber neuere Geometrie (1882), in which he also clearly formulated the view that deductions must be independent from the meanings of the nonlogical terms involved. Pasch also presented in these lectures the main tenets of his philosophy of mathematics, which he continued to elaborate on throughout the rest of his life. This philosophy is quite unique in combining a deductivist methodology with a radically empiricist epistemology for mathematics. By taking into consideration publications from the entire span of Paschs (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Geometry and generality in Frege's philosophy of arithmetic.Jamie Tappenden - 1995 - Synthese 102 (3):319 - 361.
    This paper develops some respects in which the philosophy of mathematics can fruitfully be informed by mathematical practice, through examining Frege's Grundlagen in its historical setting. The first sections of the paper are devoted to elaborating some aspects of nineteenth century mathematics which informed Frege's early work. (These events are of considerable philosophical significance even apart from the connection with Frege.) In the middle sections, some minor themes of Grundlagen are developed: the relationship Frege envisions between arithmetic and geometry and (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Frege on Consistency and Conceptual Analysis.Patricia A. Blanchette - 2007 - Philosophia Mathematica 15 (3):321-346.
    Gottlob Frege famously rejects the methodology for consistency and independence proofs offered by David Hilbert in the latter's Foundations of Geometry. The present essay defends against recent criticism the view that this rejection turns on Frege's understanding of logical entailment, on which the entailment relation is sensitive to the contents of non-logical terminology. The goals are (a) to clarify further Frege's understanding of logic and of the role of conceptual analysis in logical investigation, and (b) to point out the extent (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Frege on Axioms, Indirect Proof, and Independence Arguments in Geometry: Did Frege Reject Independence Arguments?Jamie Tappenden - 2000 - Notre Dame Journal of Formal Logic 41 (3):271-315.
    It is widely believed that some puzzling and provocative remarks that Frege makes in his late writings indicate he rejected independence arguments in geometry, particularly arguments for the independence of the parallels axiom. I show that this is mistaken: Frege distinguished two approaches to independence arguments and his puzzling remarks apply only to one of them. Not only did Frege not reject independence arguments across the board, but also he had an interesting positive proposal about the logical structure of correct (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Crossing Curves: A Limit to the Use of Diagrams in Proofs†: Articles.Marcus Giaquinto - 2011 - Philosophia Mathematica 19 (3):281-307.
    This paper investigates the following question: when can one reliably infer the existence of an intersection point from a diagram presenting crossing curves or lines? Two cases are considered, one from Euclid's geometry and the other from basic real analysis. I argue for the acceptability of such an inference in the geometric case but against in the analytic case. Though this question is somewhat specific, the investigation is intended to contribute to the more general question of the extent and limits (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (1 other version)Frege and Kant on geometry.Michael Dummett - 1982 - Inquiry: An Interdisciplinary Journal of Philosophy 25 (2):233 – 254.
    In his Grundlagen, Frege held that geometrical truths.are synthetic a priori, and that they rest on intuition. From this it has been concluded that he thought, like Kant, that space and time are a priori intuitions and that physical objects are mere appearances. It is plausible that Frege always believed geometrical truths to be synthetic a priori; the virtual disappearance of the word ‘intuition’ from his writings from after 1885 until 1924 suggests, on the other hand, that he became dissatisfied (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • What Frege Meant When He Said: Kant is Right about Geometry.Teri Merrick - 2006 - Philosophia Mathematica 14 (1):44-75.
    This paper argues that Frege's notoriously long commitment to Kant's thesis that Euclidean geometry is synthetic _a priori_ is best explained by realizing that Frege uses ‘intuition’ in two senses. Frege sometimes adopts the usage presented in Hermann Helmholtz's sign theory of perception. However, when using ‘intuition’ to denote the source of geometric knowledge, he is appealing to Hermann Cohen's use of Kantian terminology. We will see that Cohen reinterpreted Kantian notions, stripping them of any psychological connotation. Cohen's defense of (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Frege's Approach to the Foundations of Analysis (1874–1903).Matthias Schirn - 2013 - History and Philosophy of Logic 34 (3):266-292.
    The concept of quantity (Größe) plays a key role in Frege's theory of real numbers. Typically enough, he refers to this theory as ?theory of quantity? (?Größenlehre?) in the second volume of his opus magnum Grundgesetze der Arithmetik (Frege 1903). In this essay, I deal, in a critical way, with Frege's treatment of the concept of quantity and his approach to analysis from the beginning of his academic career until Frege 1903. I begin with a few introductory remarks. In Section (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Frege on Formality and the 1906 Independence-Test.Patricia A. Blanchette - 2014 - In Godehard Link (ed.), Formalism and Beyond: On the Nature of Mathematical Discourse. Boston: De Gruyter. pp. 97-118.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Frege's mathematical setting.Mark Wilson - unknown
    This survey article describes Frege's celebrated foundational work against the context of other late nineteenth century approaches to introducing mathematically novel "extension elements" within both algebra and geometry.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Frege on Quantities and Real Numbers in Consideration of the Theories of Cantor, Russell and Others.Matthias Schirn - 2014 - In Godehard Link (ed.), Formalism and Beyond: On the Nature of Mathematical Discourse. Boston: De Gruyter. pp. 25-95.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Kant's Philosophy of Geometry--On the Road to a Final Assessment.L. Kvasz - 2011 - Philosophia Mathematica 19 (2):139-166.
    The paper attempts to summarize the debate on Kant’s philosophy of geometry and to offer a restricted area of mathematical practice for which Kant’s philosophy would be a reasonable account. Geometrical theories can be characterized using Wittgenstein’s notion of pictorial form . Kant’s philosophy of geometry can be interpreted as a reconstruction of geometry based on one of these forms — the projective form . If this is correct, Kant’s philosophy is a reasonable reconstruction of such theories as projective geometry; (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Kants Theorie der geometrischen Erkenntnis und die nichteuklidische Geometrie.Matthias Schirn - 1991 - Kant Studien 82 (1):1-28.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Visual Thinking in Mathematics. [REVIEW]Marcus Giaquinto - 2009 - Analysis 69 (2):401-403.
    Our visual experience seems to suggest that no continuous curve can cover every point of the unit square, yet in the late 19th century Giuseppe Peano proved that such a curve exists. Examples like this, particularly in analysis received much attention in the 19th century. They helped to instigate what Hans Hahn called a ‘crisis of intuition’, wherein visual reasoning in mathematics came to be thought to be epistemically problematic. Hahn described this ‘crisis’ as follows : " Mathematicians had for (...)
    Download  
     
    Export citation  
     
    Bookmark   72 citations  
  • The Interpretation of Frege's Philosophy. [REVIEW]Tyler Burge - 1984 - Philosophical Review 93 (3):454-458.
    Download  
     
    Export citation  
     
    Bookmark   61 citations  
  • The Breadth of the Paradox.Patricia Blanchette - 2016 - Philosophia Mathematica 24 (1):30-49.
    This essay examines Frege's reaction to Russell's Paradox and his views about the grounding of existence claims in mathematics. It is argued that Frege's strict requirements on existential proofs would rule out the attempt to ground arithmetic in. It is hoped that this discussion will help to clarify the ways in which Frege's position is both coherent and significantly different from the neo-logicist position on the issues of: what's required for proofs of existence; the connection between models, consistency, and existence; (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Studien Zu Frege = Studies on Frege.Matthias Schirn - 1976
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Consistency, Models, and Soundness.Matthias Schirn - 2010 - Axiomathes 20 (2):153-207.
    This essay consists of two parts. In the first part, I focus my attention on the remarks that Frege makes on consistency when he sets about criticizing the method of creating new numbers through definition or abstraction. This gives me the opportunity to comment also a little on H. Hankel, J. Thomae—Frege’s main targets when he comes to criticize “formal theories of arithmetic” in Die Grundlagen der Arithmetik (1884) and the second volume of Grundgesetze der Arithmetik (1903)—G. Cantor, L. E. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Kleine Schriften. [REVIEW]Michael Resnik - 1968 - Philosophy of Science 35 (4):424-425.
    Download  
     
    Export citation  
     
    Bookmark   40 citations