Switch to: Citations

Add references

You must login to add references.
  1. Intentionality: An Essay in the Philosophy of Mind.John R. Searle - 1983 - New York: Cambridge University Press.
    John Searle's Speech Acts (1969) and Expression and Meaning (1979) developed a highly original and influential approach to the study of language. But behind both works lay the assumption that the philosophy of language is in the end a branch of the philosophy of the mind: speech acts are forms of human action and represent just one example of the mind's capacity to relate the human organism to the world. The present book is concerned with these biologically fundamental capacities, and, (...)
    Download  
     
    Export citation  
     
    Bookmark   1496 citations  
  • Understanding from Machine Learning Models.Emily Sullivan - 2022 - British Journal for the Philosophy of Science 73 (1):109-133.
    Simple idealized models seem to provide more understanding than opaque, complex, and hyper-realistic models. However, an increasing number of scientists are going in the opposite direction by utilizing opaque machine learning models to make predictions and draw inferences, suggesting that scientists are opting for models that have less potential for understanding. Are scientists trading understanding for some other epistemic or pragmatic good when they choose a machine learning model? Or are the assumptions behind why minimal models provide understanding misguided? In (...)
    Download  
     
    Export citation  
     
    Bookmark   60 citations  
  • How the machine ‘thinks’: Understanding opacity in machine learning algorithms.Jenna Burrell - 2016 - Big Data and Society 3 (1):205395171562251.
    This article considers the issue of opacity as a problem for socially consequential mechanisms of classification and ranking, such as spam filters, credit card fraud detection, search engines, news trends, market segmentation and advertising, insurance or loan qualification, and credit scoring. These mechanisms of classification all frequently rely on computational algorithms, and in many cases on machine learning algorithms to do this work. In this article, I draw a distinction between three forms of opacity: opacity as intentional corporate or state (...)
    Download  
     
    Export citation  
     
    Bookmark   215 citations  
  • Transparency in Complex Computational Systems.Kathleen A. Creel - 2020 - Philosophy of Science 87 (4):568-589.
    Scientists depend on complex computational systems that are often ineliminably opaque, to the detriment of our ability to give scientific explanations and detect artifacts. Some philosophers have s...
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  • The unreliability of naive introspection.Eric Schwitzgebel - 2006 - Philosophical Review 117 (2):245-273.
    We are prone to gross error, even in favorable circumstances of extended reflection, about our own ongoing conscious experience, our current phenomenology. Even in this apparently privileged domain, our self-knowledge is faulty and untrustworthy. We are not simply fallible at the margins but broadly inept. Examples highlighted in this essay include: emotional experience (for example, is it entirely bodily; does joy have a common, distinctive phenomenological core?), peripheral vision (how broad and stable is the region of visual clarity?), and the (...)
    Download  
     
    Export citation  
     
    Bookmark   269 citations  
  • The perceptron: A probabilistic model for information storage and organization in the brain.F. Rosenblatt - 1958 - Psychological Review 65 (6):386-408.
    If we are eventually to understand the capability of higher organisms for perceptual recognition, generalization, recall, and thinking, we must first have answers to three fundamental questions: 1. How is information about the physical world sensed, or detected, by the biological system? 2. In what form is information stored, or remembered? 3. How does information contained in storage, or in memory, influence recognition and behavior? The first of these questions is in the.
    Download  
     
    Export citation  
     
    Bookmark   178 citations  
  • Two Dimensions of Opacity and the Deep Learning Predicament.Florian J. Boge - 2021 - Minds and Machines 32 (1):43-75.
    Deep neural networks have become increasingly successful in applications from biology to cosmology to social science. Trained DNNs, moreover, correspond to models that ideally allow the prediction of new phenomena. Building in part on the literature on ‘eXplainable AI’, I here argue that these models are instrumental in a sense that makes them non-explanatory, and that their automated generation is opaque in a unique way. This combination implies the possibility of an unprecedented gap between discovery and explanation: When unsupervised models (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • The philosophical novelty of computer simulation methods.Paul Humphreys - 2009 - Synthese 169 (3):615 - 626.
    Reasons are given to justify the claim that computer simulations and computational science constitute a distinctively new set of scientific methods and that these methods introduce new issues in the philosophy of science. These issues are both epistemological and methodological in kind.
    Download  
     
    Export citation  
     
    Bookmark   140 citations  
  • Making AI Meaningful Again.Jobst Landgrebe & Barry Smith - 2021 - Synthese 198 (March):2061-2081.
    Artificial intelligence (AI) research enjoyed an initial period of enthusiasm in the 1970s and 80s. But this enthusiasm was tempered by a long interlude of frustration when genuinely useful AI applications failed to be forthcoming. Today, we are experiencing once again a period of enthusiasm, fired above all by the successes of the technology of deep neural networks or deep machine learning. In this paper we draw attention to what we take to be serious problems underlying current views of artificial (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Explaining Machine Learning Decisions.John Zerilli - 2022 - Philosophy of Science 89 (1):1-19.
    The operations of deep networks are widely acknowledged to be inscrutable. The growing field of Explainable AI has emerged in direct response to this problem. However, owing to the nature of the opacity in question, XAI has been forced to prioritise interpretability at the expense of completeness, and even realism, so that its explanations are frequently interpretable without being underpinned by more comprehensive explanations faithful to the way a network computes its predictions. While this has been taken to be a (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Inductive Risk, Understanding, and Opaque Machine Learning Models.Emily Sullivan - 2022 - Philosophy of Science 89 (5):1065-1074.
    Under what conditions does machine learning (ML) model opacity inhibit the possibility of explaining and understanding phenomena? In this article, I argue that nonepistemic values give shape to the ML opacity problem even if we keep researcher interests fixed. Treating ML models as an instance of doing model-based science to explain and understand phenomena reveals that there is (i) an external opacity problem, where the presence of inductive risk imposes higher standards on externally validating models, and (ii) an internal opacity (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • AI, Opacity, and Personal Autonomy.Bram Vaassen - 2022 - Philosophy and Technology 35 (4):1-20.
    Advancements in machine learning have fuelled the popularity of using AI decision algorithms in procedures such as bail hearings, medical diagnoses and recruitment. Academic articles, policy texts, and popularizing books alike warn that such algorithms tend to be opaque: they do not provide explanations for their outcomes. Building on a causal account of transparency and opacity as well as recent work on the value of causal explanation, I formulate a moral concern for opaque algorithms that is yet to receive a (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Opacity thought through: on the intransparency of computer simulations.Claus Beisbart - 2021 - Synthese 199 (3-4):11643-11666.
    Computer simulations are often claimed to be opaque and thus to lack transparency. But what exactly is the opacity of simulations? This paper aims to answer that question by proposing an explication of opacity. Such an explication is needed, I argue, because the pioneering definition of opacity by P. Humphreys and a recent elaboration by Durán and Formanek are too narrow. While it is true that simulations are opaque in that they include too many computations and thus cannot be checked (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead.Cynthia Rudin - 2019 - Nature Machine Intelligence 1.
    Download  
     
    Export citation  
     
    Bookmark   129 citations