- Who is afraid of black box algorithms? On the epistemological and ethical basis of trust in medical AI.Juan Manuel Durán & Karin Rolanda Jongsma - 2021 - Journal of Medical Ethics 47 (5):medethics - 2020-106820.details
|
|
Understanding, Idealization, and Explainable AI.Will Fleisher - 2022 - Episteme 19 (4):534-560.details
|
|
Two Dimensions of Opacity and the Deep Learning Predicament.Florian J. Boge - 2021 - Minds and Machines 32 (1):43-75.details
|
|
Algorithmic and human decision making: for a double standard of transparency.Mario Günther & Atoosa Kasirzadeh - 2022 - AI and Society 37 (1):375-381.details
|
|
Responsibility, second opinions and peer-disagreement: ethical and epistemological challenges of using AI in clinical diagnostic contexts.Hendrik Kempt & Saskia K. Nagel - 2022 - Journal of Medical Ethics 48 (4):222-229.details
|
|
Explaining Machine Learning Decisions.John Zerilli - 2022 - Philosophy of Science 89 (1):1-19.details
|
|
The virtues of interpretable medical AI.Joshua Hatherley, Robert Sparrow & Mark Howard - 2024 - Cambridge Quarterly of Healthcare Ethics 33 (3):323-332.details
|
|
Defining the undefinable: the black box problem in healthcare artificial intelligence.Jordan Joseph Wadden - 2022 - Journal of Medical Ethics 48 (10):764-768.details
|
|
Scientific Exploration and Explainable Artificial Intelligence.Carlos Zednik & Hannes Boelsen - 2022 - Minds and Machines 32 (1):219-239.details
|
|
What is Interpretability?Adrian Erasmus, Tyler D. P. Brunet & Eyal Fisher - 2021 - Philosophy and Technology 34:833–862.details
|
|
The Importance of Understanding Deep Learning.Tim Räz & Claus Beisbart - 2024 - Erkenntnis 89 (5).details
|
|
Accepting Moral Responsibility for the Actions of Autonomous Weapons Systems—a Moral Gambit.Mariarosaria Taddeo & Alexander Blanchard - 2022 - Philosophy and Technology 35 (3):1-24.details
|
|
Philosophy of science at sea: Clarifying the interpretability of machine learning.Claus Beisbart & Tim Räz - 2022 - Philosophy Compass 17 (6):e12830.details
|
|
AI, Opacity, and Personal Autonomy.Bram Vaassen - 2022 - Philosophy and Technology 35 (4):1-20.details
|
|
(2 other versions)The explanation game: a formal framework for interpretable machine learning.David S. Watson & Luciano Floridi - 2021 - Synthese 198 (10):9211-9242.details
|
|
Conceptual challenges for interpretable machine learning.David S. Watson - 2022 - Synthese 200 (2):1-33.details
|
|
Criminal Justice and Artificial Intelligence: How Should we Assess the Performance of Sentencing Algorithms?Jesper Ryberg - 2024 - Philosophy and Technology 37 (1):1-15.details
|
|
Understanding Moral Responsibility in Automated Decision-Making: Responsibility Gaps and Strategies to Address Them.Andrea Berber & Jelena Mijić - 2024 - Theoria: Beograd 67 (3):177-192.details
|
|
On the Justified Use of AI Decision Support in Evidence-Based Medicine: Validity, Explainability, and Responsibility.Sune Holm - forthcoming - Cambridge Quarterly of Healthcare Ethics:1-7.details
|
|
Harm to Nonhuman Animals from AI: a Systematic Account and Framework.Simon Coghlan & Christine Parker - 2023 - Philosophy and Technology 36 (2):1-34.details
|
|
AI and the expert; a blueprint for the ethical use of opaque AI.Amber Ross - 2022 - AI and Society (2022):Online.details
|
|
Evaluating XAI: A comparison of rule-based and example-based explanations.Jasper van der Waa, Elisabeth Nieuwburg, Anita Cremers & Mark Neerincx - 2021 - Artificial Intelligence 291 (C):103404.details
|
|
Using artificial intelligence to enhance patient autonomy in healthcare decision-making.Jose Luis Guerrero Quiñones - forthcoming - AI and Society.details
|
|
Legal requirements on explainability in machine learning.Adrien Bibal, Michael Lognoul, Alexandre de Streel & Benoît Frénay - 2020 - Artificial Intelligence and Law 29 (2):149-169.details
|
|
Machine learning in medicine: should the pursuit of enhanced interpretability be abandoned?Chang Ho Yoon, Robert Torrance & Naomi Scheinerman - 2022 - Journal of Medical Ethics 48 (9):581-585.details
|
|
Explainability, Public Reason, and Medical Artificial Intelligence.Michael Da Silva - 2023 - Ethical Theory and Moral Practice 26 (5):743-762.details
|
|
A top-level model of case-based argumentation for explanation: Formalisation and experiments.Henry Prakken & Rosa Ratsma - 2022 - Argument and Computation 13 (2):159-194.details
|
|
On the Ethical and Epistemological Utility of Explicable AI in Medicine.Christian Herzog - 2022 - Philosophy and Technology 35 (2):1-31.details
|
|
Leveraging Artificial Intelligence in Marketing for Social Good—An Ethical Perspective.Erik Hermann - 2022 - Journal of Business Ethics 179 (1):43-61.details
|
|
Automated decision-making and the problem of evil.Andrea Berber - 2023 - AI and Society:1-10.details
|
|
The Automated Laplacean Demon: How ML Challenges Our Views on Prediction and Explanation.Sanja Srećković, Andrea Berber & Nenad Filipović - 2021 - Minds and Machines 32 (1):159-183.details
|
|
The virtues of interpretable medical AI.Joshua Hatherley, Robert Sparrow & Mark Howard - 2024 - Cambridge Quarterly of Healthcare Ethics 33 (3).details
|
|
Putting explainable AI in context: institutional explanations for medical AI.Jacob Browning & Mark Theunissen - 2022 - Ethics and Information Technology 24 (2).details
|
|
Relative explainability and double standards in medical decision-making: Should medical AI be subjected to higher standards in medical decision-making than doctors?Saskia K. Nagel, Jan-Christoph Heilinger & Hendrik Kempt - 2022 - Ethics and Information Technology 24 (2):20.details
|
|
Allure of Simplicity.Thomas Grote - 2023 - Philosophy of Medicine 4 (1).details
|
|
Healthy Mistrust: Medical Black Box Algorithms, Epistemic Authority, and Preemptionism.Andreas Wolkenstein - 2024 - Cambridge Quarterly of Healthcare Ethics 33 (3):370-379.details
|
|
ML interpretability: Simple isn't easy.Tim Räz - 2024 - Studies in History and Philosophy of Science Part A 103 (C):159-167.details
|
|
Meaning by Courtesy: LLM-Generated Texts and the Illusion of Content.Gary Ostertag - 2023 - American Journal of Bioethics 23 (10):91-93.details
|
|
On the Opacity of Deep Neural Networks.Anders Søgaard - 2023 - Canadian Journal of Philosophy:1-16.details
|
|
AI and the need for justification (to the patient).Anantharaman Muralidharan, Julian Savulescu & G. Owen Schaefer - 2024 - Ethics and Information Technology 26 (1):1-12.details
|
|
Explaining AI through mechanistic interpretability.Lena Kästner & Barnaby Crook - 2024 - European Journal for Philosophy of Science 14 (4):1-25.details
|
|
Logic Explained Networks.Gabriele Ciravegna, Pietro Barbiero, Francesco Giannini, Marco Gori, Pietro Liò, Marco Maggini & Stefano Melacci - 2023 - Artificial Intelligence 314 (C):103822.details
|
|
Deep Learning Meets Deep Democracy: Deliberative Governance and Responsible Innovation in Artificial Intelligence.Alexander Buhmann & Christian Fieseler - forthcoming - Business Ethics Quarterly:1-34.details
|
|
Machines Learn Better with Better Data Ontology: Lessons from Philosophy of Induction and Machine Learning Practice.Dan Li - 2023 - Minds and Machines 33 (3):429-450.details
|
|
Value Alignment for Advanced Artificial Judicial Intelligence.Christoph Winter, Nicholas Hollman & David Manheim - 2023 - American Philosophical Quarterly 60 (2):187-203.details
|
|
The Epistemic Role of AI Decision Support Systems: Neither Superiors, Nor Inferiors, Nor Peers.Rand Hirmiz - 2024 - Philosophy and Technology 37 (127):1-20.details
|
|
Commentary on David Watson, “On the Philosophy of Unsupervised Learning”.Tom F. Sterkenburg - 2023 - Philosophy and Technology 36 (4):1-5.details
|
|
Maximizing team synergy in AI-related interdisciplinary groups: an interdisciplinary-by-design iterative methodology.Piercosma Bisconti, Davide Orsitto, Federica Fedorczyk, Fabio Brau, Marianna Capasso, Lorenzo De Marinis, Hüseyin Eken, Federica Merenda, Mirko Forti, Marco Pacini & Claudia Schettini - 2022 - AI and Society 1 (1):1-10.details
|
|
The Intriguing Relation Between Counterfactual Explanations and Adversarial Examples.Timo Freiesleben - 2021 - Minds and Machines 32 (1):1-33.details
|
|
Unjustified Sample Sizes and Generalizations in Explainable AI Research: Principles for More Inclusive User Studies.Uwe Peters & Mary Carman - forthcoming - IEEE Intelligent Systems.details
|
|