Switch to: References

Add citations

You must login to add citations.
  1. Procedural fairness in algorithmic decision-making: the role of public engagement.Marie Christin Decker, Laila Wegner & Carmen Leicht-Scholten - 2025 - Ethics and Information Technology 27 (1):1-16.
    Despite the widespread use of automated decision-making (ADM) systems, they are often developed without involving the public or those directly affected, leading to concerns about systematic biases that may perpetuate structural injustices. Existing formal fairness approaches primarily focus on statistical outcomes across demographic groups or individual fairness, yet these methods reveal ambiguities and limitations in addressing fairness comprehensively. This paper argues for a holistic approach to algorithmic fairness that integrates procedural fairness, considering both decision-making processes and their outcomes. Procedural fairness (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Understanding with Toy Surrogate Models in Machine Learning.Andrés Páez - 2024 - Minds and Machines 34 (4):45.
    In the natural and social sciences, it is common to use toy models—extremely simple and highly idealized representations—to understand complex phenomena. Some of the simple surrogate models used to understand opaque machine learning (ML) models, such as rule lists and sparse decision trees, bear some resemblance to scientific toy models. They allow non-experts to understand how an opaque ML model works globally via a much simpler model that highlights the most relevant features of the input space and their effect on (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Conceptualizing understanding in explainable artificial intelligence (XAI): an abilities-based approach.Timo Speith, Barnaby Crook, Sara Mann, Astrid Schomäcker & Markus Langer - 2024 - Ethics and Information Technology 26 (2):1-15.
    A central goal of research in explainable artificial intelligence (XAI) is to facilitate human understanding. However, understanding is an elusive concept that is difficult to target. In this paper, we argue that a useful way to conceptualize understanding within the realm of XAI is via certain human abilities. We present four criteria for a useful conceptualization of understanding in XAI and show that these are fulfilled by an abilities-based approach: First, thinking about understanding in terms of specific abilities is motivated (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Using artificial intelligence to enhance patient autonomy in healthcare decision-making.Jose Luis Guerrero Quiñones - forthcoming - AI and Society:1-10.
    The use of artificial intelligence in healthcare contexts is highly controversial for the (bio)ethical conundrums it creates. One of the main problems arising from its implementation is the lack of transparency of machine learning algorithms, which is thought to impede the patient’s autonomous choice regarding their medical decisions. If the patient is unable to clearly understand why and how an AI algorithm reached certain medical decision, their autonomy is being hovered. However, there are alternatives to prevent the negative impact of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Are generics and negativity about social groups common on social media? A comparative analysis of Twitter (X) data.Uwe Peters & Ignacio Ojea Quintana - 2024 - Synthese 203 (6):1-22.
    Many philosophers hold that generics (i.e., unquantified generalizations) are pervasive in communication and that when they are about social groups, this may offend and polarize people because generics gloss over variations between individuals. Generics about social groups might be particularly common on Twitter (X). This remains unexplored, however. Using machine learning (ML) techniques, we therefore developed an automatic classifier for social generics, applied it to 1.1 million tweets about people, and analyzed the tweets. While it is often suggested that generics (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Machine learning in healthcare and the methodological priority of epistemology over ethics.Thomas Grote - forthcoming - Inquiry: An Interdisciplinary Journal of Philosophy.
    This paper develops an account of how the implementation of ML models into healthcare settings requires revising the methodological apparatus of philosophical bioethics. On this account, ML models are cognitive interventions that provide decision-support to physicians and patients. Due to reliability issues, opaque reasoning processes, and information asymmetries, ML models pose inferential problems for them. These inferential problems lay the grounds for many ethical problems that currently claim centre-stage in the bioethical debate. Accordingly, this paper argues that the best way (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Explanatory Role of Machine Learning in Molecular Biology.Fridolin Gross - forthcoming - Erkenntnis:1-21.
    The philosophical debate around the impact of machine learning in science is often framed in terms of a choice between AI and classical methods as mutually exclusive alternatives involving difficult epistemological trade-offs. A common worry regarding machine learning methods specifically is that they lead to opaque models that make predictions but do not lead to explanation or understanding. Focusing on the field of molecular biology, I argue that in practice machine learning is often used with explanatory aims. More specifically, I (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • ML interpretability: Simple isn't easy.Tim Räz - 2024 - Studies in History and Philosophy of Science Part A 103 (C):159-167.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Algorithmic legitimacy in clinical decision-making.Sune Holm - 2023 - Ethics and Information Technology 25 (3):1-10.
    Machine learning algorithms are expected to improve referral decisions. In this article I discuss the legitimacy of deferring referral decisions in primary care to recommendations from such algorithms. The standard justification for introducing algorithmic decision procedures to make referral decisions is that they are more accurate than the available practitioners. The improvement in accuracy will ensure more efficient use of scarce health resources and improve patient care. In this article I introduce a proceduralist framework for discussing the legitimacy of algorithmic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Machines Learn Better with Better Data Ontology: Lessons from Philosophy of Induction and Machine Learning Practice.Dan Li - 2023 - Minds and Machines 33 (3):429-450.
    As scientists start to adopt machine learning (ML) as one research tool, the security of ML and the knowledge generated become a concern. In this paper, I explain how supervised ML can be improved with better data ontology, or the way we make categories and turn information into data. More specifically, we should design data ontology in such a way that is consistent with the knowledge that we have about the target phenomenon so that such ontology can help us make (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Knowledge representation and acquisition for ethical AI: challenges and opportunities.Vaishak Belle - 2023 - Ethics and Information Technology 25 (1):1-12.
    Machine learning (ML) techniques have become pervasive across a range of different applications, and are now widely used in areas as disparate as recidivism prediction, consumer credit-risk analysis, and insurance pricing. Likewise, in the physical world, ML models are critical components in autonomous agents such as robotic surgeons and self-driving cars. Among the many ethical dimensions that arise in the use of ML technology in such applications, analyzing morally permissible actions is both immediate and profound. For example, there is the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The virtues of interpretable medical AI.Joshua Hatherley, Robert Sparrow & Mark Howard - 2024 - Cambridge Quarterly of Healthcare Ethics 33 (3).
    Artificial intelligence (AI) systems have demonstrated impressive performance across a variety of clinical tasks. However, notoriously, sometimes these systems are “black boxes.” The initial response in the literature was a demand for “explainable AI.” However, recently, several authors have suggested that making AI more explainable or “interpretable” is likely to be at the cost of the accuracy of these systems and that prioritizing interpretability in medical AI may constitute a “lethal prejudice.” In this paper, we defend the value of interpretability (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Understanding, Idealization, and Explainable AI.Will Fleisher - 2022 - Episteme 19 (4):534-560.
    Many AI systems that make important decisions are black boxes: how they function is opaque even to their developers. This is due to their high complexity and to the fact that they are trained rather than programmed. Efforts to alleviate the opacity of black box systems are typically discussed in terms of transparency, interpretability, and explainability. However, there is little agreement about what these key concepts mean, which makes it difficult to adjudicate the success or promise of opacity alleviation methods. (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • The virtues of interpretable medical AI.Joshua Hatherley, Robert Sparrow & Mark Howard - 2024 - Cambridge Quarterly of Healthcare Ethics 33 (3):323-332.
    Artificial intelligence (AI) systems have demonstrated impressive performance across a variety of clinical tasks. However, notoriously, sometimes these systems are 'black boxes'. The initial response in the literature was a demand for 'explainable AI'. However, recently, several authors have suggested that making AI more explainable or 'interpretable' is likely to be at the cost of the accuracy of these systems and that prioritising interpretability in medical AI may constitute a 'lethal prejudice'. In this paper, we defend the value of interpretability (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Defining the undefinable: the black box problem in healthcare artificial intelligence.Jordan Joseph Wadden - 2022 - Journal of Medical Ethics 48 (10):764-768.
    The ‘black box problem’ is a long-standing talking point in debates about artificial intelligence. This is a significant point of tension between ethicists, programmers, clinicians and anyone else working on developing AI for healthcare applications. However, the precise definition of these systems are often left undefined, vague, unclear or are assumed to be standardised within AI circles. This leads to situations where individuals working on AI talk over each other and has been invoked in numerous debates between opaque and explainable (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • AI, Opacity, and Personal Autonomy.Bram Vaassen - 2022 - Philosophy and Technology 35 (4):1-20.
    Advancements in machine learning have fuelled the popularity of using AI decision algorithms in procedures such as bail hearings, medical diagnoses and recruitment. Academic articles, policy texts, and popularizing books alike warn that such algorithms tend to be opaque: they do not provide explanations for their outcomes. Building on a causal account of transparency and opacity as well as recent work on the value of causal explanation, I formulate a moral concern for opaque algorithms that is yet to receive a (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • AI and the expert; a blueprint for the ethical use of opaque AI.Amber Ross - forthcoming - AI and Society:1-12.
    The increasing demand for transparency in AI has recently come under scrutiny. The question is often posted in terms of “epistemic double standards”, and whether the standards for transparency in AI ought to be higher than, or equivalent to, our standards for ordinary human reasoners. I agree that the push for increased transparency in AI deserves closer examination, and that comparing these standards to our standards of transparency for other opaque systems is an appropriate starting point. I suggest that a (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Importance of Understanding Deep Learning.Tim Räz & Claus Beisbart - 2024 - Erkenntnis 89 (5).
    Some machine learning models, in particular deep neural networks (DNNs), are not very well understood; nevertheless, they are frequently used in science. Does this lack of understanding pose a problem for using DNNs to understand empirical phenomena? Emily Sullivan has recently argued that understanding with DNNs is not limited by our lack of understanding of DNNs themselves. In the present paper, we will argue, _contra_ Sullivan, that our current lack of understanding of DNNs does limit our ability to understand with (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Maximizing team synergy in AI-related interdisciplinary groups: an interdisciplinary-by-design iterative methodology.Piercosma Bisconti, Davide Orsitto, Federica Fedorczyk, Fabio Brau, Marianna Capasso, Lorenzo De Marinis, Hüseyin Eken, Federica Merenda, Mirko Forti, Marco Pacini & Claudia Schettini - 2022 - AI and Society 1 (1):1-10.
    In this paper, we propose a methodology to maximize the benefits of interdisciplinary cooperation in AI research groups. Firstly, we build the case for the importance of interdisciplinarity in research groups as the best means to tackle the social implications brought about by AI systems, against the backdrop of the EU Commission proposal for an Artificial Intelligence Act. As we are an interdisciplinary group, we address the multi-faceted implications of the mass-scale diffusion of AI-driven technologies. The result of our exercise (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Algorithmic fairness through group parities? The case of COMPAS-SAPMOC.Francesca Lagioia, Riccardo Rovatti & Giovanni Sartor - 2023 - AI and Society 38 (2):459-478.
    Machine learning classifiers are increasingly used to inform, or even make, decisions significantly affecting human lives. Fairness concerns have spawned a number of contributions aimed at both identifying and addressing unfairness in algorithmic decision-making. This paper critically discusses the adoption of group-parity criteria (e.g., demographic parity, equality of opportunity, treatment equality) as fairness standards. To this end, we evaluate the use of machine learning methods relative to different steps of the decision-making process: assigning a predictive score, linking a classification to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Responsibility, second opinions and peer-disagreement: ethical and epistemological challenges of using AI in clinical diagnostic contexts.Hendrik Kempt & Saskia K. Nagel - 2022 - Journal of Medical Ethics 48 (4):222-229.
    In this paper, we first classify different types of second opinions and evaluate the ethical and epistemological implications of providing those in a clinical context. Second, we discuss the issue of how artificial intelligent could replace the human cognitive labour of providing such second opinion and find that several AI reach the levels of accuracy and efficiency needed to clarify their use an urgent ethical issue. Third, we outline the normative conditions of how AI may be used as second opinion (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Local Explanations via Necessity and Sufficiency: Unifying Theory and Practice.David S. Watson, Limor Gultchin, Ankur Taly & Luciano Floridi - 2022 - Minds and Machines 32 (1):185-218.
    Necessity and sufficiency are the building blocks of all successful explanations. Yet despite their importance, these notions have been conceptually underdeveloped and inconsistently applied in explainable artificial intelligence, a fast-growing research area that is so far lacking in firm theoretical foundations. In this article, an expanded version of a paper originally presented at the 37th Conference on Uncertainty in Artificial Intelligence, we attempt to fill this gap. Building on work in logic, probability, and causality, we establish the central role of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Fairness, explainability and in-between: understanding the impact of different explanation methods on non-expert users’ perceptions of fairness toward an algorithmic system.Doron Kliger, Tsvi Kuflik & Avital Shulner-Tal - 2022 - Ethics and Information Technology 24 (1).
    In light of the widespread use of algorithmic (intelligent) systems across numerous domains, there is an increasing awareness about the need to explain their underlying decision-making process and resulting outcomes. Since oftentimes these systems are being considered as black boxes, adding explanations to their outcomes may contribute to the perception of their transparency and, as a result, increase users’ trust and fairness perception towards the system, regardless of its actual fairness, which can be measured using various fairness tests and measurements. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Automated Laplacean Demon: How ML Challenges Our Views on Prediction and Explanation.Sanja Srećković, Andrea Berber & Nenad Filipović - 2021 - Minds and Machines 32 (1):159-183.
    Certain characteristics make machine learning a powerful tool for processing large amounts of data, and also particularly unsuitable for explanatory purposes. There are worries that its increasing use in science may sideline the explanatory goals of research. We analyze the key characteristics of ML that might have implications for the future directions in scientific research: epistemic opacity and the ‘theory-agnostic’ modeling. These characteristics are further analyzed in a comparison of ML with the traditional statistical methods, in order to demonstrate what (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Two Dimensions of Opacity and the Deep Learning Predicament.Florian J. Boge - 2021 - Minds and Machines 32 (1):43-75.
    Deep neural networks have become increasingly successful in applications from biology to cosmology to social science. Trained DNNs, moreover, correspond to models that ideally allow the prediction of new phenomena. Building in part on the literature on ‘eXplainable AI’, I here argue that these models are instrumental in a sense that makes them non-explanatory, and that their automated generation is opaque in a unique way. This combination implies the possibility of an unprecedented gap between discovery and explanation: When unsupervised models (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Transparent AI: reliabilist and proud.Abhishek Mishra - forthcoming - Journal of Medical Ethics.
    Durán et al argue in ‘Who is afraid of black box algorithms? On the epistemological and ethical basis of trust in medical AI’1 that traditionally proposed solutions to make black box machine learning models in medicine less opaque and more transparent are, though necessary, ultimately not sufficient to establish their overall trustworthiness. This is because transparency procedures currently employed, such as the use of an interpretable predictor,2 cannot fully overcome the opacity of such models. Computational reliabilism, an alternate approach to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Algorithmic and human decision making: for a double standard of transparency.Mario Günther & Atoosa Kasirzadeh - 2022 - AI and Society 37 (1):375-381.
    Should decision-making algorithms be held to higher standards of transparency than human beings? The way we answer this question directly impacts what we demand from explainable algorithms, how we govern them via regulatory proposals, and how explainable algorithms may help resolve the social problems associated with decision making supported by artificial intelligence. Some argue that algorithms and humans should be held to the same standards of transparency and that a double standard of transparency is hardly justified. We give two arguments (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Who is afraid of black box algorithms? On the epistemological and ethical basis of trust in medical AI.Juan Manuel Durán & Karin Rolanda Jongsma - 2021 - Journal of Medical Ethics 47 (5):medethics - 2020-106820.
    The use of black box algorithms in medicine has raised scholarly concerns due to their opaqueness and lack of trustworthiness. Concerns about potential bias, accountability and responsibility, patient autonomy and compromised trust transpire with black box algorithms. These worries connect epistemic concerns with normative issues. In this paper, we outline that black box algorithms are less problematic for epistemic reasons than many scholars seem to believe. By outlining that more transparency in algorithms is not always necessary, and by explaining that (...)
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • Evaluating XAI: A comparison of rule-based and example-based explanations.Jasper van der Waa, Elisabeth Nieuwburg, Anita Cremers & Mark Neerincx - 2021 - Artificial Intelligence 291 (C):103404.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Explainable AI under contract and tort law: legal incentives and technical challenges.Philipp Hacker, Ralf Krestel, Stefan Grundmann & Felix Naumann - 2020 - Artificial Intelligence and Law 28 (4):415-439.
    This paper shows that the law, in subtle ways, may set hitherto unrecognized incentives for the adoption of explainable machine learning applications. In doing so, we make two novel contributions. First, on the legal side, we show that to avoid liability, professional actors, such as doctors and managers, may soon be legally compelled to use explainable ML models. We argue that the importance of explainability reaches far beyond data protection law, and crucially influences questions of contractual and tort liability for (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Epistemic Role of AI Decision Support Systems: Neither Superiors, Nor Inferiors, Nor Peers.Rand Hirmiz - 2024 - Philosophy and Technology 37 (127):1-20.
    Despite the importance of discussions over the epistemic role that artificially intelligent decision support systems ought to play, there is currently a lack of these discussions in both the AI literature and the epistemology literature. My goal in this paper is to rectify this by proposing an account of the epistemic role of AI decision support systems in medicine and discussing what this epistemic role means with regard to how these systems ought to be utilized. In particular, I argue that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Explaining AI through mechanistic interpretability.Lena Kästner & Barnaby Crook - 2024 - European Journal for Philosophy of Science 14 (4):1-25.
    Recent work in explainable artificial intelligence (XAI) attempts to render opaque AI systems understandable through a divide-and-conquer strategy. However, this fails to illuminate how trained AI systems work as a whole. Precisely this kind of functional understanding is needed, though, to satisfy important societal desiderata such as safety. To remedy this situation, we argue, AI researchers should seek mechanistic interpretability, viz. apply coordinated discovery strategies familiar from the life sciences to uncover the functional organisation of complex AI systems. Additionally, theorists (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Negotiating becoming: a Nietzschean critique of large language models.Simon W. S. Fischer & Bas de Boer - 2024 - Ethics and Information Technology 26 (3):1-12.
    Large language models (LLMs) structure the linguistic landscape by reflecting certain beliefs and assumptions. In this paper, we address the risk of people unthinkingly adopting and being determined by the values or worldviews embedded in LLMs. We provide a Nietzschean critique of LLMs and, based on the concept of will to power, consider LLMs as will-to-power organisations. This allows us to conceptualise the interaction between self and LLMs as power struggles, which we understand as negotiation. Currently, the invisibility and incomprehensibility (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Understanding Moral Responsibility in Automated Decision-Making: Responsibility Gaps and Strategies to Address Them.Andrea Berber & Jelena Mijić - 2024 - Theoria: Beograd 67 (3):177-192.
    This paper delves into the use of machine learning-based systems in decision-making processes and its implications for moral responsibility as traditionally defined. It focuses on the emergence of responsibility gaps and examines proposed strategies to address them. The paper aims to provide an introductory and comprehensive overview of the ongoing debate surrounding moral responsibility in automated decision-making. By thoroughly examining these issues, we seek to contribute to a deeper understanding of the implications of AI integration in society.
    Download  
     
    Export citation  
     
    Bookmark  
  • Toward Sociotechnical AI: Mapping Vulnerabilities for Machine Learning in Context.Roel Dobbe & Anouk Wolters - 2024 - Minds and Machines 34 (2):1-51.
    This paper provides an empirical and conceptual account on seeing machine learning models as part of a sociotechnical system to identify relevant vulnerabilities emerging in the context of use. As ML is increasingly adopted in socially sensitive and safety-critical domains, many ML applications end up not delivering on their promises, and contributing to new forms of algorithmic harm. There is still a lack of empirical insights as well as conceptual tools and frameworks to properly understand and design for the impact (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Searching for Features with Artificial Neural Networks in Science: The Problem of Non-Uniqueness.Siyu Yao & Amit Hagar - 2024 - International Studies in the Philosophy of Science 37 (1):51-67.
    Artificial neural networks and supervised learning have become an essential part of science. Beyond using them for accurate input-output mapping, there is growing attention to a new feature-oriented approach. Under the assumption that networks optimised for a task may have learned to represent and utilise important features of the target system for that task, scientists examine how those networks manipulate inputs and employ the features networks capture for scientific discovery. We analyse this approach, show its hidden caveats, and suggest its (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Explainable AI in the military domain.Nathan Gabriel Wood - 2024 - Ethics and Information Technology 26 (2):1-13.
    Artificial intelligence (AI) has become nearly ubiquitous in modern society, from components of mobile applications to medical support systems, and everything in between. In societally impactful systems imbued with AI, there has been increasing concern related to opaque AI, that is, artificial intelligence where it is unclear how or why certain decisions are reached. This has led to a recent boom in research on “explainable AI” (XAI), or approaches to making AI more explainable and understandable to human users. In the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Commentary on David Watson, “On the Philosophy of Unsupervised Learning”.Tom F. Sterkenburg - 2023 - Philosophy and Technology 36 (4):1-5.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Ethics of using artificial intelligence (AI) in veterinary medicine.Simon Coghlan & Thomas Quinn - 2023 - AI and Society (5):2337-2348.
    This paper provides the first comprehensive analysis of ethical issues raised by artificial intelligence (AI) in veterinary medicine for companion animals. Veterinary medicine is a socially valued service, which, like human medicine, will likely be significantly affected by AI. Veterinary AI raises some unique ethical issues because of the nature of the client–patient–practitioner relationship, society’s relatively minimal valuation and protection of nonhuman animals and differences in opinion about responsibilities to animal patients and human clients. The paper examines how these distinctive (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The black box problem revisited. Real and imaginary challenges for automated legal decision making.Bartosz Brożek, Michał Furman, Marek Jakubiec & Bartłomiej Kucharzyk - 2024 - Artificial Intelligence and Law 32 (2):427-440.
    This paper addresses the black-box problem in artificial intelligence (AI), and the related problem of explainability of AI in the legal context. We argue, first, that the black box problem is, in fact, a superficial one as it results from an overlap of four different – albeit interconnected – issues: the opacity problem, the strangeness problem, the unpredictability problem, and the justification problem. Thus, we propose a framework for discussing both the black box problem and the explainability of AI. We (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Attitudinal Tensions in the Joint Pursuit of Explainable and Trusted AI.Devesh Narayanan & Zhi Ming Tan - 2023 - Minds and Machines 33 (1):55-82.
    It is frequently demanded that AI-based Decision Support Tools (AI-DSTs) ought to be both explainable to, and trusted by, those who use them. The joint pursuit of these two principles is ordinarily believed to be uncontroversial. In fact, a common view is that AI systems should be made explainable so that they can be trusted, and in turn, accepted by decision-makers. However, the moral scope of these two principles extends far beyond this particular instrumental connection. This paper argues that if (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Hiring, Algorithms, and Choice: Why Interviews Still Matter.Vikram R. Bhargava & Pooria Assadi - 2024 - Business Ethics Quarterly 34 (2):201-230.
    Why do organizations conduct job interviews? The traditional view of interviewing holds that interviews are conducted, despite their steep costs, to predict a candidate’s future performance and fit. This view faces a twofold threat: the behavioral and algorithmic threats. Specifically, an overwhelming body of behavioral research suggests that we are bad at predicting performance and fit; furthermore, algorithms are already better than us at making these predictions in various domains. If the traditional view captures the whole story, then interviews seem (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Lessons From the Quest for Artificial Consciousness: The Emergence Criterion, Insight‐Oriented Ai, and Imago Dei.Sara Lumbreras - 2022 - Zygon 57 (4):963-983.
    There are several lessons that can already be drawn from the current research programs on strong AI and building conscious machines, even if they arguably have not produced fruits yet. The first one is that functionalist approaches to consciousness do not account for the key importance of subjective experience and can be easily confounded by the way in which algorithms work and succeed. Authenticity and emergence are key concepts that can be useful in discerning valid approaches versus invalid ones and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Accepting Moral Responsibility for the Actions of Autonomous Weapons Systems—a Moral Gambit.Mariarosaria Taddeo & Alexander Blanchard - 2022 - Philosophy and Technology 35 (3):1-24.
    In this article, we focus on the attribution of moral responsibility for the actions of autonomous weapons systems (AWS). To do so, we suggest that the responsibility gap can be closed if human agents can take meaningful moral responsibility for the actions of AWS. This is a moral responsibility attributed to individuals in a justified and fair way and which is accepted by individuals as an assessment of their own moral character. We argue that, given the unpredictability of AWS, meaningful (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • On the Ethical and Epistemological Utility of Explicable AI in Medicine.Christian Herzog - 2022 - Philosophy and Technology 35 (2):1-31.
    In this article, I will argue in favor of both the ethical and epistemological utility of explanations in artificial intelligence -based medical technology. I will build on the notion of “explicability” due to Floridi, which considers both the intelligibility and accountability of AI systems to be important for truly delivering AI-powered services that strengthen autonomy, beneficence, and fairness. I maintain that explicable algorithms do, in fact, strengthen these ethical principles in medicine, e.g., in terms of direct patient–physician contact, as well (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Deep Learning Meets Deep Democracy: Deliberative Governance and Responsible Innovation in Artificial Intelligence.Alexander Buhmann & Christian Fieseler - forthcoming - Business Ethics Quarterly:1-34.
    Responsible innovation in artificial intelligence calls for public deliberation: well-informed “deep democratic” debate that involves actors from the public, private, and civil society sectors in joint efforts to critically address the goals and means of AI. Adopting such an approach constitutes a challenge, however, due to the opacity of AI and strong knowledge boundaries between experts and citizens. This undermines trust in AI and undercuts key conditions for deliberation. We approach this challenge as a problem of situating the knowledge of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Scientific Exploration and Explainable Artificial Intelligence.Carlos Zednik & Hannes Boelsen - 2022 - Minds and Machines 32 (1):219-239.
    Models developed using machine learning are increasingly prevalent in scientific research. At the same time, these models are notoriously opaque. Explainable AI aims to mitigate the impact of opacity by rendering opaque models transparent. More than being just the solution to a problem, however, Explainable AI can also play an invaluable role in scientific exploration. This paper describes how post-hoc analytic techniques from Explainable AI can be used to refine target phenomena in medical science, to identify starting points for future (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • A top-level model of case-based argumentation for explanation: Formalisation and experiments.Henry Prakken & Rosa Ratsma - 2022 - Argument and Computation 13 (2):159-194.
    This paper proposes a formal top-level model of explaining the outputs of machine-learning-based decision-making applications and evaluates it experimentally with three data sets. The model draws on AI & law research on argumentation with cases, which models how lawyers draw analogies to past cases and discuss their relevant similarities and differences in terms of relevant factors and dimensions in the problem domain. A case-based approach is natural since the input data of machine-learning applications can be seen as cases. While the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • What is Interpretability?Adrian Erasmus, Tyler D. P. Brunet & Eyal Fisher - 2021 - Philosophy and Technology 34:833–862.
    We argue that artificial networks are explainable and offer a novel theory of interpretability. Two sets of conceptual questions are prominent in theoretical engagements with artificial neural networks, especially in the context of medical artificial intelligence: Are networks explainable, and if so, what does it mean to explain the output of a network? And what does it mean for a network to be interpretable? We argue that accounts of “explanation” tailored specifically to neural networks have ineffectively reinvented the wheel. In (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Argumentative explanations for pattern-based text classifiers.Piyawat Lertvittayakumjorn & Francesca Toni - 2023 - Argument and Computation 14 (2):163-234.
    Recent works in Explainable AI mostly address the transparency issue of black-box models or create explanations for any kind of models (i.e., they are model-agnostic), while leaving explanations of interpretable models largely underexplored. In this paper, we fill this gap by focusing on explanations for a specific interpretable model, namely pattern-based logistic regression (PLR) for binary text classification. We do so because, albeit interpretable, PLR is challenging when it comes to explanations. In particular, we found that a standard way to (...)
    Download  
     
    Export citation  
     
    Bookmark