Switch to: Citations

References in:

Rigour and Proof

Review of Symbolic Logic 16 (2):480-508 (2023)

Add references

You must login to add references.
  1. Three insufficiently attended to aspects of most mathematical proofs.Roberts Tragesser - 1992 - In Michael Detlefsen (ed.), Proof, Logic and Formalization. London, England: Routledge. pp. 162.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Chunk and permeate, a paraconsistent inference strategy. Part I: The infinitesimal calculus.Bryson Brown & Graham Priest - 2004 - Journal of Philosophical Logic 33 (4):379-388.
    In this paper we introduce a paraconsistent reasoning strategy, Chunk and Permeate. In this, information is broken up into chunks, and a limited amount of information is allowed to flow between chunks. We start by giving an abstract characterisation of the strategy. It is then applied to model the reasoning employed in the original infinitesimal calculus. The paper next establishes some results concerning the legitimacy of reasoning of this kind - specifically concerning the preservation of the consistency of each chunk (...)
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • The derivation-indicator view of mathematical practice.Jody Azzouni - 2004 - Philosophia Mathematica 12 (2):81-106.
    The form of nominalism known as 'mathematical fictionalism' is examined and found wanting, mainly on grounds that go back to an early antinominalist work of Rudolf Carnap that has unfortunately not been paid sufficient attention by more recent writers.
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  • Informal proof, formal proof, formalism.Alan Weir - 2016 - Review of Symbolic Logic 9 (1):23-43.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Rigour and Intuition.Oliver Tatton-Brown - 2019 - Erkenntnis 86 (6):1757-1781.
    This paper sketches an account of the standard of acceptable proof in mathematics—rigour—arguing that the key requirement of rigour in mathematics is that nontrivial inferences be provable in greater detail. This account is contrasted with a recent perspective put forward by De Toffoli and Giardino, who base their claims on a case study of an argument from knot theory. I argue that De Toffoli and Giardino’s conclusions are not supported by the case study they present, which instead is a very (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A Problem with the Dependence of Informal Proofs on Formal Proofs.Fenner Tanswell - 2015 - Philosophia Mathematica 23 (3):295-310.
    Derivationists, those wishing to explain the correctness and rigour of informal proofs in terms of associated formal proofs, are generally held to be supported by the success of the project of translating informal proofs into computer-checkable formal counterparts. I argue, however, that this project is a false friend for the derivationists because there are too many different associated formal proofs for each informal proof, leading to a serious worry of overgeneration. I press this worry primarily against Azzouni's derivation-indicator account, but (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Chunk and Permeate: The Infinitesimals of Isaac Newton.David John Sweeney - 2014 - History and Philosophy of Logic 35 (1):1-23.
    In the paper of Brown and Priest 2004, the authors developed the chunk and permeate method, which they described as a ?paraconsistent reasoning strategy?. There it is suggested that the method of chunk and permeate could apply to the historical infinitesimal calculus. However, no attempt was made to look at actual historical examples. In this paper, I show that the method of chunk and permeate can indeed apply, as a rational reconstruction, to certain of Isaac Newton's arguments that use infinitesimals. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Why Do We Prove Theorems?Yehuda Rav - 1998 - Philosophia Mathematica 6 (3):5-41.
    Ordinary mathematical proofs—to be distinguished from formal derivations—are the locus of mathematical knowledge. Their epistemic content goes way beyond what is summarised in the form of theorems. Objections are raised against the formalist thesis that every mainstream informal proof can be formalised in some first-order formal system. Foundationalism is at the heart of Hilbert's program and calls for methods of formal logic to prove consistency. On the other hand, ‘systemic cohesiveness’, as proposed here, seeks to explicate why mathematical knowledge is (...)
    Download  
     
    Export citation  
     
    Bookmark   86 citations  
  • Why Do We Prove Theorems?Yehuda Rav - 1999 - Philosophia Mathematica 7 (1):5-41.
    Ordinary mathematical proofs—to be distinguished from formal derivations—are the locus of mathematical knowledge. Their epistemic content goes way beyond what is summarised in the form of theorems. Objections are raised against the formalist thesis that every mainstream informal proof can be formalised in some first-order formal system. Foundationalism is at the heart of Hilbert's program and calls for methods of formal logic to prove consistency. On the other hand, ‘systemic cohesiveness’, as proposed here, seeks to explicate why mathematical knowledge is (...)
    Download  
     
    Export citation  
     
    Bookmark   90 citations  
  • A Critique of a Formalist-Mechanist Version of the Justification of Arguments in Mathematicians' Proof Practices.Yehuda Rav - 2007 - Philosophia Mathematica 15 (3):291-320.
    In a recent article, Azzouni has argued in favor of a version of formalism according to which ordinary mathematical proofs indicate mechanically checkable derivations. This is taken to account for the quasi-universal agreement among mathematicians on the validity of their proofs. Here, the author subjects these claims to a critical examination, recalls the technical details about formalization and mechanical checking of proofs, and illustrates the main argument with aanalysis of examples. In the author's view, much of mathematical reasoning presents genuine (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Why do we believe theorems?Andrzej Pelc - 2009 - Philosophia Mathematica 17 (1):84-94.
    The formalist point of view maintains that formal derivations underlying proofs, although usually not carried out in practice, contribute to the confidence in mathematical theorems. Opposing this opinion, the main claim of the present paper is that such a gain of confidence obtained from any link between proofs and formal derivations is, even in principle, impossible in the present state of knowledge. Our argument is based on considerations concerning length of formal derivations. Thanks to Jody Azzouni for enlightening discussions concerning (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Informal proofs and mathematical rigour.Marianna Antonutti Marfori - 2010 - Studia Logica 96 (2):261-272.
    The aim of this paper is to provide epistemic reasons for investigating the notions of informal rigour and informal provability. I argue that the standard view of mathematical proof and rigour yields an implausible account of mathematical knowledge, and falls short of explaining the success of mathematical practice. I conclude that careful consideration of mathematical practice urges us to pursue a theory of informal provability.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • How to think about informal proofs.Brendan Larvor - 2012 - Synthese 187 (2):715-730.
    It is argued in this study that (i) progress in the philosophy of mathematical practice requires a general positive account of informal proof; (ii) the best candidate is to think of informal proofs as arguments that depend on their matter as well as their logical form; (iii) articulating the dependency of informal inferences on their content requires a redefinition of logic as the general study of inferential actions; (iv) it is a decisive advantage of this conception of logic that it (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • From Euclidean geometry to knots and nets.Brendan Larvor - 2017 - Synthese:1-22.
    This paper assumes the success of arguments against the view that informal mathematical proofs secure rational conviction in virtue of their relations with corresponding formal derivations. This assumption entails a need for an alternative account of the logic of informal mathematical proofs. Following examination of case studies by Manders, De Toffoli and Giardino, Leitgeb, Feferman and others, this paper proposes a framework for analysing those informal proofs that appeal to the perception or modification of diagrams or to the inspection or (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • From Euclidean geometry to knots and nets.Brendan Larvor - 2019 - Synthese 196 (7):2715-2736.
    This paper assumes the success of arguments against the view that informal mathematical proofs secure rational conviction in virtue of their relations with corresponding formal derivations. This assumption entails a need for an alternative account of the logic of informal mathematical proofs. Following examination of case studies by Manders, De Toffoli and Giardino, Leitgeb, Feferman and others, this paper proposes a framework for analysing those informal proofs that appeal to the perception or modification of diagrams or to the inspection or (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Mathematical rigor and proof.Yacin Hamami - 2022 - Review of Symbolic Logic 15 (2):409-449.
    Mathematical proof is the primary form of justification for mathematical knowledge, but in order to count as a proper justification for a piece of mathematical knowl- edge, a mathematical proof must be rigorous. What does it mean then for a mathematical proof to be rigorous? According to what I shall call the standard view, a mathematical proof is rigorous if and only if it can be routinely translated into a formal proof. The standard view is almost an orthodoxy among contemporary (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Confronting Ideals of Proof with the Ways of Proving of the Research Mathematician.Norma B. Goethe & Michèle Friend - 2010 - Studia Logica 96 (2):273-288.
    In this paper, we discuss the prevailing view amongst philosophers and many mathematicians concerning mathematical proof. Following Cellucci, we call the prevailing view the “axiomatic conception” of proof. The conception includes the ideas that: a proof is finite, it proceeds from axioms and it is the final word on the matter of the conclusion. This received view can be traced back to Frege, Hilbert and Gentzen, amongst others, and is prevalent in both mathematical text books and logic text books.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Proof: Its Nature and Significance.Michael Detlefsen - 2009 - In Bonnie Gold & Roger A. Simons (eds.), Proof and Other Dilemmas: Mathematics and Philosophy. MAA. pp. 3-32.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Naive Set Theory.Paul R. Halmos & Patrick Suppes - 1961 - Synthese 13 (1):86-87.
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • Category Theory.S. Awodey - 2007 - Bulletin of Symbolic Logic 13 (3):371-372.
    Download  
     
    Export citation  
     
    Bookmark   70 citations  
  • Mathematical Thought from Ancient to Modern Times.M. Kline - 1978 - British Journal for the Philosophy of Science 29 (1):68-87.
    Download  
     
    Export citation  
     
    Bookmark   161 citations  
  • The Princeton Companion to Mathematics.Timothy Gowers, June Barrow-Green & Imre Leader - 2009 - Bulletin of Symbolic Logic 15 (4):431-436.
    Download  
     
    Export citation  
     
    Bookmark   19 citations