Switch to: Citations

Add references

You must login to add references.
  1. The tree property at successors of singular cardinals.Menachem Magidor & Saharon Shelah - 1996 - Archive for Mathematical Logic 35 (5-6):385-404.
    Assuming some large cardinals, a model of ZFC is obtained in which $\aleph_{\omega+1}$ carries no Aronszajn trees. It is also shown that if $\lambda$ is a singular limit of strongly compact cardinals, then $\lambda^+$ carries no Aronszajn trees.
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • The fine structure of the constructible hierarchy.R. Björn Jensen - 1972 - Annals of Mathematical Logic 4 (3):229.
    Download  
     
    Export citation  
     
    Bookmark   270 citations  
  • Some combinatorial problems concerning uncountable cardinals.Thomas J. Jech - 1973 - Annals of Mathematical Logic 5 (3):165.
    Download  
     
    Export citation  
     
    Bookmark   75 citations  
  • Aronszajn trees and failure of the singular cardinal hypothesis.Itay Neeman - 2009 - Journal of Mathematical Logic 9 (1):139-157.
    The tree property at κ+ states that there are no Aronszajn trees on κ+, or, equivalently, that every κ+ tree has a cofinal branch. For singular strong limit cardinals κ, there is tension between the tree property at κ+ and failure of the singular cardinal hypothesis at κ; the former is typically the result of the presence of strongly compact cardinals in the background, and the latter is impossible above strongly compacts. In this paper, we reconcile the two. We prove (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Small forcing makes any cardinal superdestructible.Joel David Hamkins - 1998 - Journal of Symbolic Logic 63 (1):51-58.
    Small forcing always ruins the indestructibility of an indestructible supercompact cardinal. In fact, after small forcing, any cardinal κ becomes superdestructible--any further <κ--closed forcing which adds a subset to κ will destroy the measurability, even the weak compactness, of κ. Nevertheless, after small forcing indestructible cardinals remain resurrectible, but never strongly resurrectible.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Superdestructibility: A Dual to Laver's Indestructibility.Joel David Hamkins & Saharon Shelah - 1998 - Journal of Symbolic Logic 63 (2):549-554.
    After small forcing, any $ -closed forcing will destroy the supercompactness and even the strong compactness of κ.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Aronszajn trees and the independence of the transfer property.William Mitchell - 1972 - Annals of Mathematical Logic 5 (1):21.
    Download  
     
    Export citation  
     
    Bookmark   94 citations  
  • Aronszajn trees on [aleph]2 and [aleph]3.Uri Abraham - 1983 - Annals of Mathematical Logic 24 (3):213.
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • A very weak square principle.Matthew Foreman & Menachem Magidor - 1997 - Journal of Symbolic Logic 62 (1):175-196.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • The tree property and the failure of the Singular Cardinal Hypothesis at ℵω2.Dima Sinapova - 2012 - Journal of Symbolic Logic 77 (3):934-946.
    We show that given ù many supercompact cardinals, there is a generic extension in which the tree property holds at ℵ ω²+1 and the SCH fails at ℵ ω².
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Indestructible strong compactness but not supercompactness.Arthur W. Apter, Moti Gitik & Grigor Sargsyan - 2012 - Annals of Pure and Applied Logic 163 (9):1237-1242.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Aronszajn trees on ℵ2 and ℵ3.Uri Abraham - 1983 - Annals of Mathematical Logic 24 (3):213-230.
    Assuming the existence of a supercompact cardinal and a weakly compact cardinal above it, we provide a generic extension where there are no Aronszajn trees of height ω 2 or ω 3 . On the other hand we show that some large cardinal assumptions are necessary for such a consistency result.
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Adding Closed Unbounded Subsets of ω₂ with Finite Forcing.William J. Mitchell - 2005 - Notre Dame Journal of Formal Logic 46 (3):357-371.
    An outline is given of the proof that the consistency of a κ⁺-Mahlo cardinal implies that of the statement that I[ω₂] does not include any stationary subsets of Cof(ω₁). An additional discussion of the techniques of this proof includes their use to obtain a model with no ω₂-Aronszajn tree and to add an ω₂-Souslin tree with finite conditions.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • The tree property up to אω+1.Itay Neeman - 2014 - Journal of Symbolic Logic 79 (2):429-459.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Aronszajn trees and the successors of a singular cardinal.Spencer Unger - 2013 - Archive for Mathematical Logic 52 (5-6):483-496.
    From large cardinals we obtain the consistency of the existence of a singular cardinal κ of cofinality ω at which the Singular Cardinals Hypothesis fails, there is a bad scale at κ and κ ++ has the tree property. In particular this model has no special κ +-trees.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • On the Hamkins approximation property.William J. Mitchell - 2006 - Annals of Pure and Applied Logic 144 (1-3):126-129.
    We give a short proof of a lemma which generalizes both the main lemma from the original construction in the author’s thesis of a model with no ω2-Aronszajn trees, and also the “Key Lemma” in Hamkins’ gap forcing theorems. The new lemma directly yields Hamkins’ newer lemma stating that certain forcing notions have the approximation property.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Fragility and indestructibility of the tree property.Spencer Unger - 2012 - Archive for Mathematical Logic 51 (5-6):635-645.
    We prove various theorems about the preservation and destruction of the tree property at ω2. Working in a model of Mitchell [9] where the tree property holds at ω2, we prove that ω2 still has the tree property after ccc forcing of size \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\aleph_1}$$\end{document} or adding an arbitrary number of Cohen reals. We show that there is a relatively mild forcing in this same model which destroys the tree property. Finally we (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • A model of Cummings and Foreman revisited.Spencer Unger - 2014 - Annals of Pure and Applied Logic 165 (12):1813-1831.
    Download  
     
    Export citation  
     
    Bookmark   7 citations