Switch to: Citations

Add references

You must login to add references.
  1. A Theory of Formal Deducibility.Haskell B. Curry - 1951 - Journal of Symbolic Logic 16 (1):56-58.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • A Non-deterministic View on Non-classical Negations.Arnon Avron - 2005 - Studia Logica 80 (2-3):159-194.
    We investigate two large families of logics, differing from each other by the treatment of negation. The logics in one of them are obtained from the positive fragment of classical logic (with or without a propositional constant ff for “the false”) by adding various standard Gentzen-type rules for negation. The logics in the other family are similarly obtained from LJ+, the positive fragment of intuitionistic logic (again, with or without ff). For all the systems, we provide simple semantics which is (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • The Class of Extensions of Nelson's Paraconsistent Logic.Sergei P. Odintsov - 2005 - Studia Logica 80 (2-3):291-320.
    The article is devoted to the systematic study of the lattice εN4⊥ consisting of logics extending N4⊥. The logic N4⊥ is obtained from paraconsistent Nelson logic N4 by adding the new constant ⊥ and axioms ⊥ → p, p → ∼ ⊥. We study interrelations between εN4⊥ and the lattice of superintuitionistic logics. Distinguish in εN4⊥ basic subclasses of explosive logics, normal logics, logics of general form and study how they are relate.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Nelson's Negation on the Base of Weaker Versions of Intuitionistic Negation.Dimiter Vakarelov - 2005 - Studia Logica 80 (2):393-430.
    Constructive logic with Nelson negation is an extension of the intuitionistic logic with a special type of negation expressing some features of constructive falsity and refutation by counterexample. In this paper we generalize this logic weakening maximally the underlying intuitionistic negation. The resulting system, called subminimal logic with Nelson negation, is studied by means of a kind of algebras called generalized N-lattices. We show that generalized N-lattices admit representation formalizing the intuitive idea of refutation by means of counterexamples giving in (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (1 other version)The Notion of Logical Consequence in the Logic of Inexact Predicates.John P. Cleave - 1974 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 20 (19-22):307-324.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • (1 other version)Topos based semantic for constructive logic with strong negation.Barbara Klunder & B. Klunder - 1992 - Mathematical Logic Quarterly 38 (1):509-519.
    The aim of the paper is to show that topoi are useful in the categorial analysis of the constructive logic with strong negation. In any topos ϵ we can distinguish an object Λ and its truth-arrows such that sets ϵ have a Nelson algebra structure. The object Λ is defined by the categorial counterpart of the algebraic FIDEL-VAKARELOV construction. Then it is possible to define the universal quantifier morphism which permits us to make the first order predicate calculus. The completeness (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • How a computer should think.Nuel Belnap - 1977 - In Gilbert Ryle (ed.), Contemporary aspects of philosophy. Boston: Oriel Press.
    Download  
     
    Export citation  
     
    Bookmark   159 citations  
  • Informational interpretation of substructural propositional logics.Heinrich Wansing - 1993 - Journal of Logic, Language and Information 2 (4):285-308.
    This paper deals with various substructural propositional logics, in particular with substructural subsystems of Nelson's constructive propositional logics N– and N. Doen's groupoid semantics is extended to these constructive systems and is provided with an informational interpretation in terms of information pieces and operations on information pieces.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • (1 other version)Constructible falsity.David Nelson - 1949 - Journal of Symbolic Logic 14 (1):16-26.
    Download  
     
    Export citation  
     
    Bookmark   167 citations  
  • Multi-valued Calculi for Logics Based on Non-determinism.Arnon Avron & Beata Konikowska - 2005 - Logic Journal of the IGPL 13 (4):365-387.
    Non-deterministic matrices are multiple-valued structures in which the value assigned by a valuation to a complex formula can be chosen non-deterministically out of a certain nonempty set of options. We consider two different types of semantics which are based on Nmatrices: the dynamic one and the static one . We use the Rasiowa-Sikorski decomposition methodology to get sound and complete proof systems employing finite sets of mv-signed formulas for all propositional logics based on such structures with either of the above (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • On the definition of negation by a fixed proposition in inferential calculus.Haskell B. Curry - 1952 - Journal of Symbolic Logic 17 (2):98-104.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • A First Order Nonmonotonic Extension of Constructive Logic.David Pearce & Agustín Valverde - 2005 - Studia Logica 80 (2):321-346.
    Certain extensions of Nelson's constructive logic N with strong negation have recently become important in arti.cial intelligence and nonmonotonic reasoning, since they yield a logical foundation for answer set programming (ASP). In this paper we look at some extensions of Nelson's .rst-order logic as a basis for de.ning nonmonotonic inference relations that underlie the answer set programming semantics. The extensions we consider are those based on 2-element, here-and-there Kripke frames. In particular, we prove completeness for .rst-order here-and-there logics, and their (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Dual Intuitionistic Logic and a Variety of Negations: The Logic of Scientific Research.Yaroslav Shramko - 2005 - Studia Logica 80 (2-3):347-367.
    We consider a logic which is semantically dual (in some precise sense of the term) to intuitionistic. This logic can be labeled as “falsification logic”: it embodies the Popperian methodology of scientific discovery. Whereas intuitionistic logic deals with constructive truth and non-constructive falsity, and Nelson's logic takes both truth and falsity as constructive notions, in the falsification logic truth is essentially non-constructive as opposed to falsity that is conceived constructively. We also briefly clarify the relationships of our falsification logic to (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • N-Lattices and Constructive Logic with Strong Negation.H. Rasiowa - 1969 - Journal of Symbolic Logic 34 (1):118-118.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Generalized onrno negation.J. Michael Dunn - 1996 - In Heinrich Wansing (ed.), Negation: a notion in focus. New York: W. de Gruyter. pp. 7--3.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Multivalued logics: a uniform approach to reasoning in AI.Matthew Ginsberg - 1988 - Computer Intelligence 4 (1):256--316.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Bilattices and the Semantics of Logic Programming.Melvin Fitting - unknown
    Bilattices, due to M. Ginsberg, are a family of truth value spaces that allow elegantly for missing or conflicting information. The simplest example is Belnap’s four-valued logic, based on classical two-valued logic. Among other examples are those based on finite many-valued logics, and on probabilistic valued logic. A fixed point semantics is developed for logic programming, allowing any bilattice as the space of truth values. The mathematics is little more complex than in the classical two-valued setting, but the result provides (...)
    Download  
     
    Export citation  
     
    Bookmark   63 citations  
  • An algebraic and Kripke-style approach to a certain extension of intuitionistic logic.Cecylia Rauszer - 1980 - Warszawa: [available from Ars Polona].
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Intuitive semantics for some three-valued logics connected with information, contrariety and subcontrariety.Dimiter Vakarelov - 1989 - Studia Logica 48 (4):565 - 575.
    Four known three-valued logics are formulated axiomatically and several completeness theorems with respect to nonstandard intuitive semantics, connected with the notions of information, contrariety and subcontrariety is given.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Nelson algebras through Heyting ones: I.Andrzej Sendlewski - 1990 - Studia Logica 49 (1):105-126.
    The main aim of the present paper is to explain a nature of relationships exist between Nelson and Heyting algebras. In the realization, a topological duality theory of Heyting and Nelson algebras based on the topological duality theory of Priestley for bounded distributive lattices are applied. The general method of construction of spaces dual to Nelson algebras from a given dual space to Heyting algebra is described. The algebraic counterpart of this construction being a generalization of the Fidel-Vakarelov construction is (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • A formalization of the propositional calculus of H-B logic.Cecylia Rauszer - 1974 - Studia Logica 33 (1):23 - 34.
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • The Craig interpolation theorem for prepositional logics with strong negation.Valentin Goranko - 1985 - Studia Logica 44 (3):291 - 317.
    This paper deals with, prepositional calculi with strong negation (N-logics) in which the Craig interpolation theorem holds. N-logics are defined to be axiomatic strengthenings of the intuitionistic calculus enriched with a unary connective called strong negation. There exists continuum of N-logics, but the Craig interpolation theorem holds only in 14 of them.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Partiality and its dual.J. Michael Dunn - 2000 - Studia Logica 66 (1):5-40.
    This paper explores allowing truth value assignments to be undetermined or "partial" and overdetermined or "inconsistent", thus returning to an investigation of the four-valued semantics that I initiated in the sixties. I examine some natural consequence relations and show how they are related to existing logics, including ukasiewicz's three-valued logic, Kleene's three-valued logic, Anderson and Belnap's relevant entailments, Priest's "Logic of Paradox", and the first-degree fragment of the Dunn-McCall system "R-mingle". None of these systems have nested implications, and I investigate (...)
    Download  
     
    Export citation  
     
    Bookmark   86 citations  
  • Constructible falsity and inexact predicates.Ahmad Almukdad & David Nelson - 1984 - Journal of Symbolic Logic 49 (1):231-233.
    Download  
     
    Export citation  
     
    Bookmark   105 citations  
  • An algebraic approach to non-classical logics.Helena Rasiowa - 1974 - Warszawa,: PWN - Polish Scientific Publishers.
    Provability, Computability and Reflection.
    Download  
     
    Export citation  
     
    Bookmark   229 citations  
  • Non-Classical Negation in the Works of Helena Rasiowa and Their Impact on the Theory of Negation.Dimiter Vakarelov - 2006 - Studia Logica 84 (1):105-127.
    The paper is devoted to the contributions of Helena Rasiowa to the theory of non-classical negation. The main results of Rasiowa in this area concerns–constructive logic with strong (Nelson) negation.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Gentzen-Type Methods for Bilattice Negation.Norihiro Kamide - 2005 - Studia Logica 80 (2-3):265-289.
    A general Gentzen-style framework for handling both bilattice (or strong) negation and usual negation is introduced based on the characterization of negation by a modal-like operator. This framework is regarded as an extension, generalization or re- finement of not only bilattice logics and logics with strong negation, but also traditional logics including classical logic LK, classical modal logic S4 and classical linear logic CL. Cut-elimination theorems are proved for a variety of proposed sequent calculi including CLS (a conservative extension of (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • A Canonical Model Construction For Substructural Logics With Strong Negation.N. Kamide - 2002 - Reports on Mathematical Logic:95-116.
    We introduce Kripke models for propositional substructural logics with strong negation, and show the completeness theorems for these logics using an extended Ishihara's canonical model construction method. The framework presented can deal with a broad range of substructural logics with strong negation, including a modified version of Nelson's logic N$^-$, Wansing's logic COSPL, and extended versions of Visser's basic propositional logic, positive relevant logics, Corsi's logics and M\'endez's logics.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Functional Completeness and Axiomatizability within Belnap's Four-Valued Logic and its Expansions.Alexej P. Pynko - 1999 - Journal of Applied Non-Classical Logics 9 (1):61-105.
    In this paper we study 12 four-valued logics arisen from Belnap's truth and/or knowledge four-valued lattices, with or without constants, by adding one or both or none of two new non-regular operations—classical negation and natural implication. We prove that the secondary connectives of the bilattice four-valued logic with bilattice constants are exactly the regular four-valued operations. Moreover, we prove that its expansion by any non-regular connective (such as, e.g., classical negation or natural implication) is strictly functionally complete. Further, finding axiomatizations (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • (1 other version)On the Proof Method for Constructive Falsity.Seiki Akama - 1988 - Mathematical Logic Quarterly 34 (5):385-392.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The trilaticce of constructive truth values.Yaroslav Shramko, J. Michael Dunn & Tatsutoshi Takenaka - 2001 - Journal of Logic and Computation 11 (1):761--788.
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • (1 other version)The system LD.Haskell B. Curry - 1952 - Journal of Symbolic Logic 17 (1):35-42.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Natural 3-valued logics—characterization and proof theory.Arnon Avron - 1991 - Journal of Symbolic Logic 56 (1):276-294.
    Download  
     
    Export citation  
     
    Bookmark   85 citations  
  • Reasoning with logical bilattices.Ofer Arieli & Arnon Avron - 1996 - Journal of Logic, Language and Information 5 (1):25--63.
    The notion of bilattice was introduced by Ginsberg, and further examined by Fitting, as a general framework for many applications. In the present paper we develop proof systems, which correspond to bilattices in an essential way. For this goal we introduce the notion of logical bilattices. We also show how they can be used for efficient inferences from possibly inconsistent data. For this we incorporate certain ideas of Kifer and Lozinskii, which happen to suit well the context of our work. (...)
    Download  
     
    Export citation  
     
    Bookmark   112 citations  
  • Negation in the Context of Gaggle Theory.J. Michael Dunn & Chunlai Zhou - 2005 - Studia Logica 80 (2):235-264.
    We study an application of gaggle theory to unary negative modal operators. First we treat negation as impossibility and get a minimal logic system Ki that has a perp semantics. Dunn 's kite of different negations can be dealt with in the extensions of this basic logic Ki. Next we treat negation as “unnecessity” and use a characteristic semantics for different negations in a kite which is dual to Dunn 's original one. Ku is the minimal logic that has a (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • A semantical study of constructible falsity.Richmond H. Thomason - 1969 - Mathematical Logic Quarterly 15 (16-18):247-257.
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • The Idea of a Proof-Theoretic Semantics and the Meaning of the Logical Operations.Heinrich Wansing - 2000 - Studia Logica 64 (1):3-20.
    This is a purely conceptual paper. It aims at presenting and putting into perspective the idea of a proof-theoretic semantics of the logical operations. The first section briefly surveys various semantic paradigms, and Section 2 focuses on one particular paradigm, namely the proof-theoretic semantics of the logical operations.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Intuitionistic logic with strong negation.Yuri Gurevich - 1977 - Studia Logica 36 (1-2):49 - 59.
    This paper is a reaction to the following remark by grzegorczyk: "the compound sentences are not a product of experiment. they arise from reasoning. this concerns also negations; we see that the lemon is yellow, we do not see that it is not blue." generally, in science the truth is ascertained as indirectly as falsehood. an example: a litmus-paper is used to verify the sentence "the solution is acid." this approach gives rise to a (very intuitionistic indeed) conservative extension of (...)
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • A Theory of Formal Deducibility.Haskell Brooks Curry - 1966 - Notre Dame, IN, USA: [University of Notre Dame Press].
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (1 other version)Decidability of Some Extensions of J.R. I. Goldblatt - 1974 - Mathematical Logic Quarterly 20 (13‐18):203-206.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Propositional Logics Related to Heyting's and Johansson's.Krister Segerberg - 1968 - Theoria 34 (1):26-61.
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • On Negation, Completeness and Consistency.Arnon Avron - unknown
    We have avoided here the term \false", since we do not want to commit ourselves to the view that A is false precisely when it is not true. Our formulation of the intuition is therefore obviously circular, but this is unavoidable in intuitive informal characterizations of basic connectives and quanti ers.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Semantical analyses of propositional systems of Fitch and Nelson.Richard Routley - 1974 - Studia Logica 33 (3):283 - 298.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Non-deterministic Matrices and Modular Semantics of Rules.Arnon Avron - unknown
    We show by way of example how one can provide in a lot of cases simple modular semantics for rules of inference, so that the semantics of a system is obtained by joining the semantics of its rules in the most straightforward way. Our main tool for this task is the use of finite Nmatrices, which are multi-valued structures in which the value assigned by a valuation to a complex formula can be chosen non-deterministically out of a certain nonempty set (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • On the Representation of Quasi-Boolean Algebras.A. Bialynicki-Birula & H. Rasiowa - 1957 - Journal of Symbolic Logic 22 (4):370-370.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • (1 other version)Review: R. S. Pierce, Representation Theorems for Certain Boolean Algebras. [REVIEW]Carol R. Karp - 1962 - Journal of Symbolic Logic 27 (1):100-101.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Kripke Completeness of First-Order Constructive Logics with Strong Negation.Ichiro Hasuo & Ryo Kashima - 2003 - Logic Journal of the IGPL 11 (6):615-646.
    This paper considers Kripke completeness of Nelson's constructive predicate logic N3 and its several variants. N3 is an extension of intuitionistic predicate logic Int by an contructive negation operator ∼ called strong negation. The variants of N3 in consideration are by omitting the axiom A → , by adding the axiom of constant domain ∀x ∨ B) → ∀xA ∨ B, by adding ∨ , and by adding ¬¬; the last one we would like to call the axiom of potential (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Algebraic Treatment of the Notion of Satisfiability.H. Rasiowa & R. Sikorski - 1955 - Journal of Symbolic Logic 20 (1):78-80.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Subformula semantics for strong negation systems.Seiki Akama - 1990 - Journal of Philosophical Logic 19 (2):217 - 226.
    We present a semantics for strong negation systems on the basis of the subformula property of the sequent calculus. The new models, called subformula models, are constructed as a special class of canonical Kripke models for providing the way from the cut-elimination theorem to model-theoretic results. This semantics is more intuitive than the standard Kripke semantics for strong negation systems.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Logical Connectives for Constructive Modal Logic.Heinrich Wansing - 2006 - Synthese 150 (3):459-482.
    Model-theoretic proofs of functional completenes along the lines of [McCullough 1971, Journal of Symbolic Logic 36, 15–20] are given for various constructive modal propositional logics with strong negation.
    Download  
     
    Export citation  
     
    Bookmark   9 citations