Switch to: References

Add citations

You must login to add citations.
  1. Completeness and cut-elimination theorems for trilattice logics.Norihiro Kamide & Heinrich Wansing - 2011 - Annals of Pure and Applied Logic 162 (10):816-835.
    A sequent calculus for Odintsov’s Hilbert-style axiomatization of a logic related to the trilattice SIXTEEN3 of generalized truth values is introduced. The completeness theorem w.r.t. a simple semantics for is proved using Maehara’s decomposition method that simultaneously derives the cut-elimination theorem for . A first-order extension of and its semantics are also introduced. The completeness and cut-elimination theorems for are proved using Schütte’s method.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Bilattices with Implications.Félix Bou & Umberto Rivieccio - 2013 - Studia Logica 101 (4):651-675.
    In a previous work we studied, from the perspective ofAlgebraic Logic, the implicationless fragment of a logic introduced by O. Arieli and A. Avron using a class of bilattice-based logical matrices called logical bilattices. Here we complete this study by considering the Arieli-Avron logic in the full language, obtained by adding two implication connectives to the standard bilattice language. We prove that this logic is algebraizable and investigate its algebraic models, which turn out to be distributive bilattices with additional implication (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • An infinity of super-Belnap logics.Umberto Rivieccio - 2012 - Journal of Applied Non-Classical Logics 22 (4):319-335.
    We look at extensions (i.e., stronger logics in the same language) of the Belnap–Dunn four-valued logic. We prove the existence of a countable chain of logics that extend the Belnap–Dunn and do not coincide with any of the known extensions (Kleene’s logics, Priest’s logic of paradox). We characterise the reduced algebraic models of these new logics and prove a completeness result for the first and last element of the chain stating that both logics are determined by a single finite logical (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Priestley Duality for Bilattices.A. Jung & U. Rivieccio - 2012 - Studia Logica 100 (1-2):223-252.
    We develop a Priestley-style duality theory for different classes of algebras having a bilattice reduct. A similar investigation has already been realized by B. Mobasher, D. Pigozzi, G. Slutzki and G. Voutsadakis, but only from an abstract category-theoretic point of view. In the present work we are instead interested in a concrete study of the topological spaces that correspond to bilattices and some related algebras that are obtained through expansions of the algebraic language.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Reasoning with logical bilattices.Ofer Arieli & Arnon Avron - 1996 - Journal of Logic, Language and Information 5 (1):25--63.
    The notion of bilattice was introduced by Ginsberg, and further examined by Fitting, as a general framework for many applications. In the present paper we develop proof systems, which correspond to bilattices in an essential way. For this goal we introduce the notion of logical bilattices. We also show how they can be used for efficient inferences from possibly inconsistent data. For this we incorporate certain ideas of Kifer and Lozinskii, which happen to suit well the context of our work. (...)
    Download  
     
    Export citation  
     
    Bookmark   113 citations  
  • Identity and Aboutness.Benjamin Brast-McKie - 2021 - Journal of Philosophical Logic 50 (6):1471-1503.
    This paper develops a theory of propositional identity which distinguishes necessarily equivalent propositions that differ in subject-matter. Rather than forming a Boolean lattice as in extensional and intensional semantic theories, the space of propositions forms a non-interlaced bilattice. After motivating a departure from tradition by way of a number of plausible principles for subject-matter, I will provide a Finean state semantics for a novel theory of propositions, presenting arguments against the convexity and nonvacuity constraints which Fine (2016, 2017a,b) introduces. I (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Elimination of Cuts in First-order Finite-valued Logics.Matthias Baaz, Christian G. Fermüller & Richard Zach - 1993 - Journal of Information Processing and Cybernetics EIK 29 (6):333-355.
    A uniform construction for sequent calculi for finite-valued first-order logics with distribution quantifiers is exhibited. Completeness, cut-elimination and midsequent theorems are established. As an application, an analog of Herbrand’s theorem for the four-valued knowledge-representation logic of Belnap and Ginsberg is presented. It is indicated how this theorem can be used for reasoning about knowledge bases with incomplete and inconsistent information.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • A Paradox of Inferentialism.Giacomo Turbanti - 2015 - AL-Mukhatabat 16:163-195.
    John McDowell articulated a radical criticism of normative inferentialism against Robert Brandom’s expressivist account of conceptual contents. One of his main concerns consists in vindicating a notion of intentionality that could not be reduced to the deontic relations that are established by discursive practitioners. Noticeably, large part of this discussion is focused on empirical knowledge and observational judgments. McDowell argues that there is no role for inference in the application of observational concepts, except the paradoxical one of justifying the content (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Representation of interlaced trilattices.Umberto Rivieccio - 2013 - Journal of Applied Logic 11 (2):174-189.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Bilattices are nice things.Melvin Fitting - 2008 - In Thomas Bolander (ed.), Self-reference. Center for the Study of Language and Inf.
    One approach to the paradoxes of self-referential languages is to allow some sentences to lack a truth value (or to have more than one). Then assigning truth values where possible becomes a fixpoint construction and, following Kripke, this is usually carried out over a partially ordered family of three-valued truth-value assignments. Some years ago Matt Ginsberg introduced the notion of bilattice, with applications to artificial intelligence in mind. Bilattices generalize the structure Kripke used in a very natural way, while making (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Well-Founded Semantics, Generalized.Melvin C. Fitting - unknown
    Classical fixpoint semantics for logic programs is based on the TP immediate consequence operator. The Kripke/Kleene, three-valued, semantics uses ΦP, which extends TP to Kleene’s strong three-valued logic. Both these approaches generalize to cover logic programming systems based on a wide class of logics, provided only that the underlying structure be that of a bilattice. This was presented in earlier papers. Recently well-founded semantics has become influential for classical logic programs. We show how the well-founded approach also extends naturally to (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Note on a six-valued extension of three-valued logic.Josep M. Font & Massoud Moussavi - 1993 - Journal of Applied Non-Classical Logics 3 (2):173-187.
    ABSTRACT In this paper we introduce a set of six logical values, arising in the application of three-valued logics to time intervals, find its algebraic structure, and use it to define a six-valued logic. We then prove, by using algebraic properties of the class of De Morgan algebras, that this semantically defined logic can be axiomatized as Belnap's ?useful? four-valued logic. Other directions of research suggested by the construction of this set of six logical values are described.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Family of Stable Models.Melvin Fitting - unknown
    The family of all stable models for a logic program has a surprisingly simple overall structure, once two naturally occurring orderings are made explicit. In a so-called knowledge ordering based on degree of definedness, every logic program P has a smallest stable model, sk P — it is the well-founded model. There is also a dual largest stable model, S k P, which has not been considered before. There is another ordering based on degree of truth. Taking the meet and (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • A few more useful 8-valued logics for reasoning with tetralattice eight.Dmitry Zaitsev - 2009 - Studia Logica 92 (2):265 - 280.
    In their useful logic for a computer network Shramko and Wansing generalize initial values of Belnap’s 4-valued logic to the set 16 to be the power-set of Belnap’s 4. This generalization results in a very specific algebraic structure — the trilattice SIXTEEN 3 with three orderings: information, truth and falsity. In this paper, a slightly different way of generalization is presented. As a base for further generalization a set 3 is chosen, where initial values are a — incoming data is (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Kleene's logic, generalized.Melvin Fitting - unknown
    Kleene’s well-known strong three-valued logic is shown to be one of a family of logics with similar mathematical properties. These logics are produced by an intuitively natural construction. The resulting logics have direct relationships with bilattices. In addition they possess mathematical features that lend themselves well to semantical constructions based on fixpoint procedures, as in logic programming.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Quantifiers in connexive logic (in general and in particular).Heinrich Wansing & Zach Weber - forthcoming - Logic Journal of the IGPL.
    Connexive logic has room for two pairs of universal and particular quantifiers: one pair, |$\forall $| and |$\exists $|⁠, are standard quantifiers; the other pair, |$\mathbb{A}$| and |$\mathbb{E}$|⁠, are unorthodox, but we argue, are well-motivated in the context of connexive logic. Both non-standard quantifiers have been introduced previously, but in the context of connexive logic they have a natural semantic and proof-theoretic place, and plausible natural language readings. The results are logics that are negation inconsistent but non-trivial.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Truth and Falsehood: An Inquiry Into Generalized Logical Values.Yaroslav Shramko & Heinrich Wansing - 2011 - Dordrecht, Netherland: Springer.
    The book presents a thoroughly elaborated logical theory of generalized truth-values understood as subsets of some established set of truth values. After elucidating the importance of the very notion of a truth value in logic and philosophy, we examine some possible ways of generalizing this notion. The useful four-valued logic of first-degree entailment by Nuel Belnap and the notion of a bilattice constitute the basis for further generalizations. By doing so we elaborate the idea of a multilattice, and most notably, (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • A Few More Useful 8-valued Logics for Reasoning with Tetralattice EIGHT 4.Dmitry Zaitsev - 2009 - Studia Logica 92 (2):265-280.
    In their useful logic for a computer network Shramko and Wansing generalize initial values of Belnap’s 4-valued logic to the set 16 to be the power-set of Belnap’s 4. This generalization results in a very specific algebraic structure — the trilattice SIXTEEN3 with three orderings: information, truth and falsity. In this paper, a slightly different way of generalization is presented. As a base for further generalization a set 3 is chosen, where initial values are a — incoming data is asserted, (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • A Non-deterministic View on Non-classical Negations.Arnon Avron - 2005 - Studia Logica 80 (2-3):159-194.
    We investigate two large families of logics, differing from each other by the treatment of negation. The logics in one of them are obtained from the positive fragment of classical logic (with or without a propositional constant ff for “the false”) by adding various standard Gentzen-type rules for negation. The logics in the other family are similarly obtained from LJ+, the positive fragment of intuitionistic logic (again, with or without ff). For all the systems, we provide simple semantics which is (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Knowledge, Uncertainty and Ignorance in Logic: Bilattices and beyond.George Gargov - 1999 - Journal of Applied Non-Classical Logics 9 (2-3):195-283.
    ABSTRACT In the paper we present a survey of some approaches to the semantics of many-valued propositional systems. These approaches are inspired on one hand by classical problems in the investigations of logical aspects of epistemic activity: knowledge and truth, contradictions, beliefs, reliability of data, etc. On the other hand they reflect contemporary concerns of researchers in Artificial Intelligence (and Cognitive Science in general) with inferences drawn from imperfect information, even from total ignorance. We treat the mathematical apparatus that has (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Belief functions on distributive lattices.Chunlai Zhou - 2013 - Artificial Intelligence 201 (C):1-31.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • An encompassing framework for Paraconsistent Logic Programs.João Alcântara, Carlos Viegas Damásio & Luís Moniz Pereira - 2005 - Journal of Applied Logic 3 (1):67-95.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The value of the four values.Ofer Arieli & Arnon Avron - 1998 - Artificial Intelligence 102 (1):97-141.
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • Non-Classical Negation in the Works of Helena Rasiowa and Their Impact on the Theory of Negation.Dimiter Vakarelov - 2006 - Studia Logica 84 (1):105-127.
    The paper is devoted to the contributions of Helena Rasiowa to the theory of non-classical negation. The main results of Rasiowa in this area concerns–constructive logic with strong (Nelson) negation.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Fixpoint Semantics for Logic Programming A Survey.Melvin Fitting - unknown
    The variety of semantical approaches that have been invented for logic programs is quite broad, drawing on classical and many-valued logic, lattice theory, game theory, and topology. One source of this richness is the inherent non-monotonicity of its negation, something that does not have close parallels with the machinery of other programming paradigms. Nonetheless, much of the work on logic programming semantics seems to exist side by side with similar work done for imperative and functional programming, with relatively minimal contact (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Rivals to Belnap–Dunn Logic on Interlaced Trilattices.Thomas M. Ferguson - 2017 - Studia Logica 105 (6):1123-1148.
    The work of Arnon Avron and Ofer Arieli has shown a deep relationship between the theory of bilattices and the Belnap-Dunn logic \. This correspondence has been interpreted as evidence that \ is “the” logic of bilattices, a consideration reinforced by the work of Yaroslav Shramko and Heinrich Wansing in which \ is shown to be similarly entrenched with respect to the theories of trilattices and, more generally, multilattices. In this paper, we export Melvin Fitting’s “cut-down” connectives—propositional connectives that “cut (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A new axiomatic foundation of partial comparability.Alexis Tsoukiàs & Philippe Vincke - 1995 - Theory and Decision 39 (1):79-114.
    Download  
     
    Export citation  
     
    Bookmark   1 citation