Switch to: Citations

Add references

You must login to add references.
  1. Mathematical Thought and its Objects.Charles Parsons - 2007 - New York: Cambridge University Press.
    Charles Parsons examines the notion of object, with the aim to navigate between nominalism, denying that distinctively mathematical objects exist, and forms of Platonism that postulate a transcendent realm of such objects. He introduces the central mathematical notion of structure and defends a version of the structuralist view of mathematical objects, according to which their existence is relative to a structure and they have no more of a 'nature' than that confers on them. Parsons also analyzes the concept of intuition (...)
    Download  
     
    Export citation  
     
    Bookmark   106 citations  
  • Collected works.Kurt Gödel - 1986 - New York: Oxford University Press. Edited by Solomon Feferman.
    Kurt Godel was the most outstanding logician of the twentieth century, famous for his work on the completeness of logic, the incompleteness of number theory, and the consistency of the axiom of choice and the continuum hypothesis. He is also noted for his work on constructivity, the decision problem, and the foundations of computation theory, as well as for the strong individuality of his writings on the philosophy of mathematics. Less well-known is his discovery of unusual cosmological models for Einstein's (...)
    Download  
     
    Export citation  
     
    Bookmark   104 citations  
  • (1 other version)Completeness in the theory of types.Leon Henkin - 1950 - Journal of Symbolic Logic 15 (2):81-91.
    Download  
     
    Export citation  
     
    Bookmark   204 citations  
  • Grundzüge der theoretischen Logik.D. Hilbert & W. Ackermann - 1928 - Annalen der Philosophie Und Philosophischen Kritik 7:157-157.
    Download  
     
    Export citation  
     
    Bookmark   213 citations  
  • (5 other versions)Grundzüge der theoretischen logik.David Hilbert - 1928 - Berlin,: G. Springer. Edited by Wilhelm Ackermann.
    Die theoretische Logik, auch mathematische oder symbolische Logik genannt, ist eine Ausdehnung der fonnalen Methode der Mathematik auf das Gebiet der Logik. Sie wendet fUr die Logik eine ahnliche Fonnel­ sprache an, wie sie zum Ausdruck mathematischer Beziehungen schon seit langem gebrauchlich ist. In der Mathematik wurde es heute als eine Utopie gelten, wollte man beim Aufbau einer mathematischen Disziplin sich nur der gewohnlichen Sprache bedienen. Die groBen Fortschritte, die in der Mathematik seit der Antike gemacht worden sind, sind zum (...)
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • (3 other versions)The independence of the continuum hypothesis.Paul Cohen - 1963 - Proc. Nat. Acad. Sci. USA 50 (6):1143-1148.
    Download  
     
    Export citation  
     
    Bookmark   69 citations  
  • Second-order logic and foundations of mathematics.Jouko Väänänen - 2001 - Bulletin of Symbolic Logic 7 (4):504-520.
    We discuss the differences between first-order set theory and second-order logic as a foundation for mathematics. We analyse these languages in terms of two levels of formalization. The analysis shows that if second-order logic is understood in its full semantics capable of characterizing categorically central mathematical concepts, it relies entirely on informal reasoning. On the other hand, if it is given a weak semantics, it loses its power in expressing concepts categorically. First-order set theory and second-order logic are not radically (...)
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • (3 other versions)The Independence of the Continuum Hypothesis.Paul J. Cohen - 1963 - Proceedings of the National Academy of Sciences of the United States of America 50 (6):1143--8.
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • Multiple universes of sets and indeterminate truth values.Donald A. Martin - 2001 - Topoi 20 (1):5-16.
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • (1 other version)Second order logic or set theory?Jouko Väänänen - 2012 - Bulletin of Symbolic Logic 18 (1):91-121.
    We try to answer the question which is the “right” foundation of mathematics, second order logic or set theory. Since the former is usually thought of as a formal language and the latter as a first order theory, we have to rephrase the question. We formulate what we call the second order view and a competing set theory view, and then discuss the merits of both views. On the surface these two views seem to be in manifest conflict with each (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Internal Categoricity in Arithmetic and Set Theory.Jouko Väänänen & Tong Wang - 2015 - Notre Dame Journal of Formal Logic 56 (1):121-134.
    We show that the categoricity of second-order Peano axioms can be proved from the comprehension axioms. We also show that the categoricity of second-order Zermelo–Fraenkel axioms, given the order type of the ordinals, can be proved from the comprehension axioms. Thus these well-known categoricity results do not need the so-called “full” second-order logic, the Henkin second-order logic is enough. We also address the question of “consistency” of these axiom systems in the second-order sense, that is, the question of existence of (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • (1 other version)Boolean-Valued Models and Independence Proofs in Set Theory.J. L. Bell & Dana Scott - 1981 - Journal of Symbolic Logic 46 (1):165-165.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • (1 other version)Boolean-Valued Models and Independence Proofs in Set Theory.J. L. Bell & Dana Scott - 1986 - Journal of Symbolic Logic 51 (4):1076-1077.
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Predicative foundations of arithmetic.Solomon Feferman & Geoffrey Hellman - 1995 - Journal of Philosophical Logic 24 (1):1 - 17.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Reductions in the Theory of Types.K. Jaakko Hintikka - 1966 - Journal of Symbolic Logic 31 (4):660-660.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • On second-order characterizability.T. Hyttinen, K. Kangas & J. Vaananen - 2013 - Logic Journal of the IGPL 21 (5):767-787.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Boolean-Valued Second-Order Logic.Daisuke Ikegami & Jouko Väänänen - 2015 - Notre Dame Journal of Formal Logic 56 (1):167-190.
    In so-called full second-order logic, the second-order variables range over all subsets and relations of the domain in question. In so-called Henkin second-order logic, every model is endowed with a set of subsets and relations which will serve as the range of the second-order variables. In our Boolean-valued second-order logic, the second-order variables range over all Boolean-valued subsets and relations on the domain. We show that under large cardinal assumptions Boolean-valued second-order logic is more robust than full second-order logic. Its (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Second-order Logic And Foundations Of Mathematics.Jouko V. "A. "An "Anen - 2001 - Bulletin of Symbolic Logic 7 (4):504-520.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Isomorphism and higher order equivalence.M. Ajtai - 1979 - Annals of Mathematical Logic 16 (3):181.
    Download  
     
    Export citation  
     
    Bookmark   9 citations