The Ontology for Biomedical Investigations (OBI) is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide a representation of biomedical knowledge from the Open Biological and Biomedical Ontologies (OBO) project and adds the ability to describe how this knowledge was derived. We here describe the state of OBI and several applications that are using it, such as adding semantic expressivity to (...) existing databases, building data entry forms, and enabling interoperability between knowledge resources. OBI covers all phases of the investigation process, such as planning, execution and reporting. It represents information and material entities that participate in these processes, as well as roles and functions. Prior to OBI, it was not possible to use a single internally consistent resource that could be applied to multiple types of experiments for these applications. OBI has made this possible by creating terms for entities involved in biological and medical investigations and by importing parts of other biomedical ontologies such as GO, Chemical Entities of Biological Interest (ChEBI) and Phenotype Attribute and Trait Ontology (PATO) without altering their meaning. OBI is being used in a wide range of projects covering genomics, multi-omics, immunology, and catalogs of services. OBI has also spawned other ontologies (Information Artifact Ontology) and methods for importing parts of ontologies (Minimum information to reference an external ontology term (MIREOT)). The OBI project is an open cross-disciplinary collaborative effort, encompassing multiple research communities from around the globe. To date, OBI has created 2366 classes and 40 relations along with textual and formal definitions. The OBI Consortium maintains a web resource providing details on the people, policies, and issues being addressed in association with OBI. (shrink)
Biological ontologies are used to organize, curate, and interpret the vast quantities of data arising from biological experiments. While this works well when using a single ontology, integrating multiple ontologies can be problematic, as they are developed independently, which can lead to incompatibilities. The Open Biological and Biomedical Ontologies Foundry was created to address this by facilitating the development, harmonization, application, and sharing of ontologies, guided by a set of overarching principles. One challenge in reaching these goals was that the (...) OBO principles were not originally encoded in a precise fashion, and interpretation was subjective. Here we show how we have addressed this by formally encoding the OBO principles as operational rules and implementing a suite of automated validation checks and a dashboard for objectively evaluating each ontology’s compliance with each principle. This entailed a substantial effort to curate metadata across all ontologies and to coordinate with individual stakeholders. We have applied these checks across the full OBO suite of ontologies, revealing areas where individual ontologies require changes to conform to our principles. Our work demonstrates how a sizable federated community can be organized and evaluated on objective criteria that help improve overall quality and interoperability, which is vital for the sustenance of the OBO project and towards the overall goals of making data FAIR. Competing Interest StatementThe authors have declared no competing interest. (shrink)
Despite a large and multifaceted effort to understand the vast landscape of phenotypic data, their current form inhibits productive data analysis. The lack of a community-wide, consensus-based, human- and machine-interpretable language for describing phenotypes and their genomic and environmental contexts is perhaps the most pressing scientific bottleneck to integration across many key fields in biology, including genomics, systems biology, development, medicine, evolution, ecology, and systematics. Here we survey the current phenomics landscape, including data resources and handling, and the progress that (...) has been made to accurately capture relevant data descriptions for phenotypes. We present an example of the kind of integration across domains that computable phenotypes would enable, and we call upon the broader biology community, publishers, and relevant funding agencies to support efforts to surmount today's data barriers and facilitate analytical reproducibility. (shrink)
Vaccine research, as well as the development, testing, clinical trials, and commercial uses of vaccines involve complex processes with various biological data that include gene and protein expression, analysis of molecular and cellular interactions, study of tissue and whole body responses, and extensive epidemiological modeling. Although many data resources are available to meet different aspects of vaccine needs, it remains a challenge how we are to standardize vaccine annotation, integrate data about varied vaccine types and resources, and support advanced vaccine (...) data analysis and inference. To address these problems, the community-based Vaccine Ontology (VO) has been developed through collaboration with vaccine researchers and many national and international centers and programs, including the National Center for Biomedical Ontology (NCBO), the Infectious Disease Ontology (IDO) Initiative, and the Ontology for Biomedical Investigations (OBI). VO utilizes the Basic Formal Ontology (BFO) as the top ontology and the Relation Ontology (RO) for definition of term relationships. VO is represented in the Web Ontology Language (OWL) and edited using the Protégé-OWL. Currently VO contains more than 2000 terms and relationships. VO emphasizes on classification of vaccines and vaccine components, vaccine quality and phenotypes, and host immune response to vaccines. These reflect different aspects of vaccine composition and biology and can thus be used to model individual vaccines. More than 200 licensed vaccines and many vaccine candidates in research or clinical trials have been modeled in VO. VO is being used for vaccine literature mining through collaboration with the National Center for Integrative Biomedical Informatics (NCIBI). Multiple VO applications will be presented. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.