7 found
Order:
  1. Plant Seedlings Classification Using Deep Learning.Belal A. M. Ashqar, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2019 - International Journal of Academic Information Systems Research (IJAISR) 3 (1):7-14.
    Agriculture is very important to human continued existence and remains a key driver of many economies worldwide, especially in underdeveloped and developing economies. There is an increasing demand for food and cash crops, due to the increasing in world population and the challenges enforced by climate modifications, there is an urgent need to increase plant production while reducing costs. Preceding instrument vision methods established for selective weeding have confronted with major challenges for trustworthy and precise weed recognition. In this paper, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. Parkinson’s Disease Prediction Using Artificial Neural Network.Ramzi M. Sadek, Salah A. Mohammed, Abdul Rahman K. Abunbehan, Abdul Karim H. Abdul Ghattas, Majed R. Badawi, Mohamed N. Mortaja, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2019 - International Journal of Academic Health and Medical Research (IJAHMR) 3 (1):1-8.
    Parkinson's Disease (PD) is a long-term degenerative disorder of the central nervous system that mainly affects the motor system. The symptoms generally come on slowly over time. Early in the disease, the most obvious are shaking, rigidity, slowness of movement, and difficulty with walking. Doctors do not know what causes it and finds difficulty in early diagnosing the presence of Parkinson’s disease. An artificial neural network system with back propagation algorithm is presented in this paper for helping doctors in identifying (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3.  75
    Prediction of Whether Mushroom is Edible or Poisonous Using Back-Propagation Neural Network.Eyad Sameh Alkronz, Khaled A. Moghayer, Mohamad Meimeh, Mohannad Gazzaz, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2019 - International Journal of Academic and Applied Research (IJAAR) 3 (2):1-8.
    Abstract: Predication is an application of Artificial Neural Network (ANN). It is a supervised learning due to predefined input and output attributes. Multi-Layer ANN model is used for training, validating, and testing of the data. In this paper, Multi-Layer ANN model was used to train and test the mushroom dataset to predict whether it is edible or poisonous. The Mushrooms dataset was prepared for training, 8124 instances were used for the training. JustNN software was used to training and validating the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4.  86
    Predicting Overall Car Performance Using Artificial Neural Network.Osama M. Al-Mubayyed, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2019 - International Journal of Academic and Applied Research (IJAAR) 3 (1):1-5.
    In this paper an Artificial Neural Network (ANN) model was used to help cars dealers recognize the many characteristics of cars, including manufacturers, their location and classification of cars according to several categories including: Buying, Maint, Doors, Persons, Lug_boot, Safety, and Overall. ANN was used in forecasting car acceptability. The results showed that ANN model was able to predict the car acceptability with 99.62 %. The factor of Safety has the most influence on car acceptability evaluation. Comparative study method is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5.  40
    Tic-Tac-Toe Learning Using Artificial Neural Networks.Mohaned Abu Dalffa, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2019 - International Journal of Engineering and Information Systems (IJEAIS) 3 (2):9-19.
    Throughout this research, imposing the training of an Artificial Neural Network (ANN) to play tic-tac-toe bored game, by training the ANN to play the tic-tac-toe logic using the set of mathematical combination of the sequences that could be played by the system and using both the Gradient Descent Algorithm explicitly and the Elimination theory rules implicitly. And so on the system should be able to produce imunate amalgamations to solve every state within the game course to make better of results (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6.  48
    Artificial Neural Network for Forecasting Car Mileage Per Gallon in the City.Mohsen Afana, Jomana Ahmed, Bayan Harb, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2018 - International Journal of Advanced Science and Technology 124:51-59.
    In this paper an Artificial Neural Network (ANN) model was used to help cars dealers recognize the many characteristics of cars, including manufacturers, their location and classification of cars according to several categories including: Make, Model, Type, Origin, DriveTrain, MSRP, Invoice, EngineSize, Cylinders, Horsepower, MPG_Highway, Weight, Wheelbase, Length. ANN was used in prediction of the number of miles per gallon when the car is driven in the city(MPG_City). The results showed that ANN model was able to predict MPG_City with 97.50 (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7.  33
    Glass Classification Using Artificial Neural Network.Mohmmad Jamal El-Khatib, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2019 - International Journal of Academic Pedagogical Research (IJAPR) 3 (23):25-31.
    As a type of evidence glass can be very useful contact trace material in a wide range of offences including burglaries and robberies, hit-and-run accidents, murders, assaults, ram-raids, criminal damage and thefts of and from motor vehicles. All of that offer the potential for glass fragments to be transferred from anything made of glass which breaks, to whoever or whatever was responsible. Variation in manufacture of glass allows considerable discrimination even with tiny fragments. In this study, we worked glass classification (...)
    Download  
     
    Export citation  
     
    Bookmark