Results for 'Optimized'

70 found
Order:
  1. OPTIMIZED DRIVER DROWSINESS DETECTION USING MACHINE LEARNING TECHNIQUES.S. Yoheswari - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):395-400.
    Driver drowsiness is a significant factor contributing to road accidents, resulting in severe injuries and fatalities. This study presents an optimized approach for detecting driver drowsiness using machine learning techniques. The proposed system utilizes real-time data to analyze driver behavior and physiological signals to identify signs of fatigue. Various machine learning algorithms, including Support Vector Machines (SVM), Convolutional Neural Networks (CNN), and Random Forest, are explored for their efficacy in detecting drowsiness. The system incorporates an optimization technique—such as Genetic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2.  73
    Optimized Energy Numbers Continued.Parker Emmerson - 2024 - Journal of Liberated Mathematics 1:12.
    In this paper, we explore the properties and optimization techniques related to polyhedral cones and energy numbers with a focus on the cone of positive semidefinite matrices and efficient computation strategies for kernels. In Part (a), we examine the polyhedral nature of the cone of positive semidefinite matrices, , establishing that it does not form a polyhedral cone for due to its infinite dimensional characteristics. In Part (b), we present an algorithm for efficiently computing the kernel function on-the-fly, leveraging a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3.  62
    OPTIMIZED ENCRYPTION PROTOCOL FOR LIGHTWEIGHT AND SEARCHABLE DATA IN IOT ENVIRONMENTS.S. Yoheswari - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):408-414.
    As the Internet of Things (IoT) continues to expand, ensuring secure and efficient data storage and retrieval becomes a critical challenge. IoT devices, often constrained by limited computational resources, require lightweight encryption protocols that balance security and performance. This paper presents an optimized encryption protocol designed specifically for lightweight, searchable data in IoT environments. The proposed protocol utilizes advanced optimization techniques to enhance the efficiency and security of searchable encryption, enabling rapid data retrieval without compromising the integrity and confidentiality (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4.  64
    OPTIMIZED CLOUD SECURE STORAGE: A FRAMEWORK FOR DATA ENCRYPTION, DECRYPTION, AND DISPERSION.S. Yoheswari - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):415-426.
    The exponential growth of cloud storage has necessitated advanced security measures to protect sensitive data from unauthorized access. Traditional encryption methods provide a layer of security, but they often lack the robustness needed to address emerging threats. This paper introduces an optimized framework for secure cloud storage that integrates data encryption, decryption, and dispersion using cutting-edge optimization techniques. The proposed model enhances data security by first encrypting the data, then dispersing it across multiple cloud servers, ensuring that no single (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5.  59
    Optimized Energy Numbers.Parker Emmerson - 2024 - Journal of Liberated Mathematics 1 (1):36.
    We recall, "a priori," numeric energy expression: -/- Energy Numbers -/- $\begin{gathered}\mathcal{V}=\left\{f \mid \exists\left\{e_1, e_2, \ldots, e_n\right\} \in E \cup R\right\} \\ \mathcal{V}=\left\{f \mid \exists\left\{e_1, e_2, \ldots, e_n\right\} \in E, \text { and }: E \mapsto r \in R\right\} \\ \mathcal{V}=\left\{E \mid \exists\left\{a_1, \ldots, a_n\right\} \in E, E \not \neg r \in R\right\}\end{gathered}$ -/- We now introduce the set of optimized energy numbers: -/- ($H_a \in \mathcal{H}$ or $P^n = NP$ or $(P,\mathcal{L},F) = NP$). -/- Based on our formulation (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6.  29
    Optimized Depth-Based Routing for Energy-Efficient Data Transmission in Underwater Wireless Sensor Networks.K. Usharani - 2024 - Journal of Science Technology and Research (JSTAR) 5 ( 1):623-628.
    Underwater Wireless Sensor Networks (UWSNs) are pivotal for various applications, including oceanographic data collection, environmental monitoring, and naval operations. However, the harsh underwater environment poses challenges in designing efficient routing protocols, especially concerning energy consumption and data transmission reliability. This paper proposes an optimized depth-based routing protocol for energy-aware data transmission in UWSNs, focusing on minimizing energy usage while ensuring robust data delivery. The protocol dynamically adjusts transmission power based on node depth and residual energy, reducing communication overhead and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. OPTIMIZED CARDIOVASCULAR DISEASE PREDICTION USING MACHINE LEARNING ALGORITHMS.S. Yoheswari - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):350-359.
    Cardiovascular diseases (CVD) represent a significant cause of morbidity and mortality worldwide, necessitating early detection for effective intervention. This research explores the application of machine learning (ML) algorithms in predicting cardiovascular diseases with enhanced accuracy by integrating optimization techniques. By leveraging data-driven approaches, ML models can analyze vast datasets, identifying patterns and risk factors that traditional methods might overlook. This study focuses on implementing various ML algorithms, such as Decision Trees, Random Forest, Support Vector Machines, and Neural Networks, optimized (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8.  68
    Optimized Attribute-Based Search and Secure Storage for Cloud Computing Environments.M. Arul Selvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):361-370.
    In the modern digital era, cloud storage has become an indispensable service due to its scalability, accessibility, and cost-effectiveness. However, with the vast amount of sensitive information stored on cloud platforms, ensuring data security and privacy remains a critical challenge. Traditional encryption techniques, while secure, often hinder efficient data retrieval, especially when using keyword searches. To address this, attribute-based keyword search (ABKS) offers a promising solution by allowing secure, fine-grained access control and efficient keyword searches over encrypted data.
    Download  
     
    Export citation  
     
    Bookmark  
  9. OPTIMIZED SECURE CLOUD STORAGE USING ATTRIBUTE-BASED KEYWORD SEARCH.S. Yoheswari - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):338-349.
    In the modern digital era, cloud storage has become an indispensable service due to its scalability, accessibility, and cost-effectiveness. However, with the vast amount of sensitive information stored on cloud platforms, ensuring data security and privacy remains a critical challenge. Traditional encryption techniques, while secure, often hinder efficient data retrieval, especially when using keyword searches. To address this, attribute-based keyword search (ABKS) offers a promising solution by allowing secure, fine-grained access control and efficient keyword searches over encrypted data. This paper (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10.  89
    OPTIMIZED INTRUSION DETECTION MODEL FOR IDENTIFYING KNOWN AND INNOVATIVE CYBER ATTACKS USING SUPPORT VECTOR MACHINE (SVM) ALGORITHMS.S. Yoheswari - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):398-404.
    The ever-evolving landscape of cyber threats necessitates robust and adaptable intrusion detection systems (IDS) capable of identifying both known and emerging attacks. Traditional IDS models often struggle with detecting novel threats, leading to significant security vulnerabilities. This paper proposes an optimized intrusion detection model using Support Vector Machine (SVM) algorithms tailored to detect known and innovative cyberattacks with high accuracy and efficiency. The model integrates feature selection and dimensionality reduction techniques to enhance detection performance while reducing computational overhead. By (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11.  88
    Optimized Fog Computing and IoT Integrated Environment for Healthcare Monitoring and Diagnosis using Extended Li Zeroing Neural Network.S. M. Padmavathi - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):501-516.
    The EdTech revolution in India has emerged as a transformative force, particularly during and after the COVID-19 pandemic, when traditional education systems faced unprecedented disruptions. While digital technologies have unlocked new opportunities for teaching and learning, they have also exposed systemic inequities and deepened the existing digital divide. This paper examines how EdTech is reshaping India's education landscape by addressing these challenges, with a focus on both the opportunities it presents and the barriers it creates.
    Download  
     
    Export citation  
     
    Bookmark  
  12.  86
    Optimized Workload Distribution Frameworks for Accelerated Computing Systems.P. Selvaprasanth - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):550-560.
    Our findings reveal that implementing accelerated computing can achieve substantial improvements, often reducing computation times by more than 60% compared to traditional sequential methods. This paper details the experimental setup, including algorithm selection and parallelization techniques, and discusses the role of memory bandwidth and latency in achieving optimal performance. Based on the analysis, we propose a streamlined methodology to guide the deployment of accelerated computing frameworks in various industries. Concluding with a discussion on future directions, we highlight potential advancements in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13.  53
    Optimized Face Reconstruction Using 3D Convolutional Neural Networks.A. Manoj Prabaharan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):509-520.
    The accuracy levels of VGG19 and 3D CNN are compared using the performance metrics. This comparison helps in identifying which model performs better in the task of facial reconstruction from distorted images. Visualizing the results in the form of a graph provides a clear and concise way to understand the comparative performance of the algorithms. The ultimate goal of this project is to develop a system that can accurately reconstruct distorted faces, which can be invaluable in identifying accident victims or (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14.  56
    Machine Learning for Optimized Attribute-Based Data Management in Secure Cloud Storage.P. Selvaprasanth - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):434-450.
    Cloud storage's scalability, accessibility, and affordability have made it essential in the digital age. Data security and privacy remain a major issue due to the large volume of sensitive data kept on cloud services. Traditional encryption is safe but slows data recovery, especially for keyword searches. Secure, fine-grained access control and quick keyword searches over encrypted data are possible using attribute-based keyword search (ABKS). This study examines how ABKS might optimize search efficiency and data security in cloud storage systems. We (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. OPTIMIZED CYBERBULLYING DETECTION IN SOCIAL MEDIA USING SUPERVISED MACHINE LEARNING AND NLP TECHNIQUES.S. Yoheswari - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):421-435.
    The rise of social media has created a new platform for communication and interaction, but it has also facilitated the spread of harmful behaviors such as cyberbullying. Detecting and mitigating cyberbullying on social media platforms is a critical challenge that requires advanced technological solutions. This paper presents a novel approach to cyberbullying detection using a combination of supervised machine learning (ML) and natural language processing (NLP) techniques, enhanced by optimization algorithms. The proposed system is designed to identify and classify cyberbullying (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16.  61
    Optimized Cloud Computing Solutions for Cardiovascular Disease Prediction Using Advanced Machine Learning.Kannan K. S. - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):465-480.
    The world's leading cause of morbidity and death is cardiovascular diseases (CVD), which makes early detection essential for successful treatments. This study investigates how optimization techniques can be used with machine learning (ML) algorithms to forecast cardiovascular illnesses more accurately. ML models can evaluate enormous datasets by utilizing data-driven techniques, finding trends and risk factors that conventional methods can miss. In order to increase prediction accuracy, this study focuses on adopting different machine learning algorithms, including Decision Trees, Random Forest, Support (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17.  69
    Adaptive SVM Techniques for Optimized Detection of Known and Novel Cyber Intrusions.M. Arulselvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):398-405.
    The ever-evolving landscape of cyber threats necessitates robust and adaptable intrusion detection systems (IDS) capable of identifying both known and emerging attacks. Traditional IDS models often struggle with detecting novel threats, leading to significant security vulnerabilities. This paper proposes an optimized intrusion detection model using Support Vector Machine (SVM) algorithms tailored to detect known and innovative cyberattacks with high accuracy and efficiency. The model integrates feature selection and dimensionality reduction techniques to enhance detection performance while reducing computational overhead.
    Download  
     
    Export citation  
     
    Bookmark  
  18.  64
    OPTIMIZED AGGREGATED PACKET TRANSMISSION IN DUTY-CYCLED WIRELESS SENSOR NETWORKS.S. Yoheswari - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):444-458.
    t: Wireless Sensor Networks (WSNs) have become increasingly prevalent in various applications, ranging from environmental monitoring to smart cities. However, the limited energy resources of sensor nodes pose significant challenges in maintaining network longevity and data transmission efficiency. Duty-cycled WSNs, where sensor nodes alternate between active and sleep states to conserve energy, offer a solution to these challenges but introduce new complexities in data transmission.
    Download  
     
    Export citation  
     
    Bookmark  
  19.  72
    Advanced Driver Drowsiness Detection Model Using Optimized Machine Learning Algorithms.S. Arul Selvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):396-402.
    Driver drowsiness is a significant factor contributing to road accidents, resulting in severe injuries and fatalities. This study presents an optimized approach for detecting driver drowsiness using machine learning techniques. The proposed system utilizes real-time data to analyze driver behavior and physiological signals to identify signs of fatigue. Various machine learning algorithms, including Support Vector Machines (SVM), Convolutional Neural Networks (CNN), and Random Forest, are explored for their efficacy in detecting drowsiness. The system incorporates an optimization technique—such as Genetic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20.  75
    Intelligent Driver Drowsiness Detection System Using Optimized Machine Learning Models.M. Arulselvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):397-405.
    : Driver drowsiness is a significant factor contributing to road accidents, resulting in severe injuries and fatalities. This study presents an optimized approach for detecting driver drowsiness using machine learning techniques. The proposed system utilizes real-time data to analyze driver behavior and physiological signals to identify signs of fatigue. Various machine learning algorithms, including Support Vector Machines (SVM), Convolutional Neural Networks (CNN), and Random Forest, are explored for their efficacy in detecting drowsiness. The system incorporates an optimization technique—such as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21.  34
    Smart Deduplication Framework for Optimized Data Management in Hybrid Cloud.M. Arulselvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):587-597.
    The framework leverages a hybrid cloud architecture, combining the scalability of public clouds with the security of private clouds. By employing a combination of client-side hashing, metadata indexing, and machine learning-based duplicate detection, the framework achieves significant storage savings without compromising data integrity. Real-time testing on a hybrid cloud setup demonstrated a 65% reduction in storage needs and a 40% improvement in data retrieval times. Additionally, the system employs blockchain for immutable logging of deduplication activities, enhancing transparency and traceability. This (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22.  26
    Streamlined Inventory Handling Using Optimized Robotic Pick and Place Systems.P. Selvaprasanth - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):660-680.
    We propose a systematic workflow for automating the storage and retrieval process, starting from the identification of the stock to its precise placement and retrieval within the storage facility. The design also addresses potential challenges such as robot mobility, collision avoidance, and space optimization. Performance metrics, including accuracy, time efficiency, and system scalability, are measured using simulation-based experiments in a controlled environment. The results show significant improvements in operational efficiency compared to traditional stock management approaches. This integration paves the way (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. AI Powered Anti-Cyber bullying system using Machine Learning Algorithm of Multinomial Naïve Bayes and Optimized Linear Support Vector Machine.Tosin Ige - 2022 - International Journal of Advanced Computer Science and Applications 13 (5):1 - 5.
    Unless and until our society recognizes cyber bullying for what it is, the suffering of thousands of silent victims will continue.” ~ Anna Maria Chavez. There had been series of research on cyber bullying which are unable to provide reliable solution to cyber bullying. In this research work, we were able to provide a permanent solution to this by developing a model capable of detecting and intercepting bullying incoming and outgoing messages with 92% accuracy. We also developed a chatbot automation (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24.  84
    Efficient Cloud-Enabled Cardiovascular Disease Risk Prediction and Management through Optimized Machine Learning.P. Selvaprasanth - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):454-475.
    The world's leading cause of morbidity and death is cardiovascular diseases (CVD), which makes early detection essential for successful treatments. This study investigates how optimization techniques can be used with machine learning (ML) algorithms to forecast cardiovascular illnesses more accurately. ML models can evaluate enormous datasets by utilizing data-driven techniques, finding trends and risk factors that conventional methods can miss. In order to increase prediction accuracy, this study focuses on adopting different machine learning algorithms, including Decision Trees, Random Forest, Support (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25.  65
    Secure Cloud Storage with Machine Learning-Optimized Attribute-Based Access Control Protocols.P. Selvaprasanth - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):420-435.
    This study examines how ABKS might optimize search efficiency and data security in cloud storage systems. We examine index compression, query processing improvement, and encryption optimization to decrease computational cost and preserve security. After a thorough investigation, the article shows how these methods may boost cloud storage system performance, security, and usability. Tests show that improved ABKS speeds up search searches and lowers storage costs, making it a viable cloud storage alternative. Exploring sophisticated machine learning algorithms for predictive search improvements (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26.  64
    Scalable Cloud Solutions for Cardiovascular Disease Risk Management with Optimized Machine Learning Techniques.A. Manoj Prabaharan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):454-470.
    The predictive capacity of the model is evaluated using evaluation measures, such as accuracy, precision, recall, F1-score, and the area under the ROC curve (AUC-ROC). Our findings show that improved machine learning models perform better than conventional methods, offering trustworthy forecasts that can help medical practitioners with early diagnosis and individualized treatment planning. In order to achieve even higher predicted accuracy, the study's conclusion discusses the significance of its findings for clinical practice as well as future improvements that might be (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27.  61
    Cloud-Enabled Risk Management of Cardiovascular Diseases Using Optimized Predictive Machine Learning Models.Kannan K. S. - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):460-475.
    Data preparation, feature engineering, model training, and performance evaluation are all part of the study methodology. To ensure reliable and broadly applicable models, we utilize optimization techniques like Grid Search and Genetic Algorithms to precisely adjust model parameters. Features including age, blood pressure, cholesterol levels, and lifestyle choices are employed as inputs for the machine learning models in the dataset, which consists of patient medical information. The predictive capacity of the model is evaluated using evaluation measures, such as accuracy, precision, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28.  37
    ntelligent Hybrid Cloud Data Deduplication for Optimized Storage Utilization.A. Manoj Prabaharan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):625-633.
    The framework leverages a hybrid cloud architecture, combining the scalability of public clouds with the security of private clouds. By employing a combination of client-side hashing, metadata indexing, and machine learning-based duplicate detection, the framework achieves significant storage savings without compromising data integrity. Real-time testing on a hybrid cloud setup demonstrated a 65% reduction in storage needs and a 40% improvement in data retrieval times. Additionally, the system employs blockchain for immutable logging of deduplication activities, enhancing transparency and traceability. This (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. Optimisation of mixed proportion for cement brick containing plastic waste using response surface methodology (RSM).Chuck Chuan Ng - 2022 - Innovative Infrastructure Solutions 7.
    Plastic waste is a significant environmental problem for almost all countries; therefore, protecting the environment from the problem is crucial. The most sensible solution to these problems is substituting the natural aggregates with substantial plastic waste in various building materials. This study aimed to optimise the mixed design ratio of cement brick containing plastic waste as aggregate replacement. Plastic cement brick mixtures were prepared by the incorporation of four different types of plastic waste such as polyethylene terephthalate (PET), high-density polyethylene, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. The Future of Human-Artificial Intelligence Nexus and its Environmental Costs.Petr Spelda & Vit Stritecky - 2020 - Futures 117.
    The environmental costs and energy constraints have become emerging issues for the future development of Machine Learning (ML) and Artificial Intelligence (AI). So far, the discussion on environmental impacts of ML/AI lacks a perspective reaching beyond quantitative measurements of the energy-related research costs. Building on the foundations laid down by Schwartz et al., 2019 in the GreenAI initiative, our argument considers two interlinked phenomena, the gratuitous generalisation capability and the future where ML/AI performs the majority of quantifiable inductive inferences. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. A Monetary Case for Value-added Negative Tax.Michael Kowalik - 2015 - Real-World Economics Review 2015 (70):80-91.
    We address the most fundamental yet routinely ignored issue in economics today: that of distributive impact of the monetary system on the real economy. By re-examining the logical implications of token re-presentation of value and Irving Fisher’s theory of exchange, we argue that producers of value incur incidental expropriation of wealth associated with the deflationary effect that new value supply has on the purchasing power of money. In order to remedy the alleged inequity we propose a value-added negative tax (VANT) (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. The evolution of skilled imitative learning: a social attention hypothesis.Antonella Tramacere & Richard Moore - 2020 - In Ellen Fridland & Carlotta Pavese (eds.), The Routledge Handbook of Philosophy of Skill and Expertise. New York, NY: Routledge. pp. 394-408.
    Humans are uncontroversially better than other species at learning from their peers. A key example of this is imitation, the ability to reproduce both the means and ends of others’ behaviours. Imitation is critical to the acquisition of a number of uniquely human cultural and cognitive traits. However, while authors largely agree on the importance of imitation, they disagree about the origins of imitation in humans. Some argue that imitation is an adaptation, connected to the ‘Mirror Neuron System’ that evolved (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. Technologically scaffolded atypical cognition: the case of YouTube’s recommender system.Mark Alfano, Amir Ebrahimi Fard, J. Adam Carter, Peter Clutton & Colin Klein - 2020 - Synthese 199 (1):835-858.
    YouTube has been implicated in the transformation of users into extremists and conspiracy theorists. The alleged mechanism for this radicalizing process is YouTube’s recommender system, which is optimized to amplify and promote clips that users are likely to watch through to the end. YouTube optimizes for watch-through for economic reasons: people who watch a video through to the end are likely to then watch the next recommended video as well, which means that more advertisements can be served to them. (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  34. Models and Explanation.Alisa Bokulich - 2017 - In Magnani Lorenzo & Bertolotti Tommaso Wayne (eds.), Springer Handbook of Model-Based Science. Springer. pp. 103-118.
    Detailed examinations of scientific practice have revealed that the use of idealized models in the sciences is pervasive. These models play a central role in not only the investigation and prediction of phenomena, but in their received scientific explanations as well. This has led philosophers of science to begin revising the traditional philosophical accounts of scientific explanation in order to make sense of this practice. These new model-based accounts of scientific explanation, however, raise a number of key questions: Can the (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  35. Self-abduction; oracles, ecocognition and purpose in life.Jeffrey White - forthcoming - In Selene Arfini (ed.), Essays in Honor of Lorenzo Magnani: Volume 2 - Scientific Cognition, Semiotics, and Computational Agents. Springer.
    This chapter follows Lorenzo Magnani's observation that ongoing commercialization of science and academia impoverishes human potential for discovery. The chapter reviews Magnani on affordance, wonders what is accessible when "good" affordances appear absent, and answers self-affordance. Ecologies optimized for discovery should be optimized for self-affordance. The chapter considers the role of oracle as leading vision for discovery, and proposes a naturalized account of self that is essentially propositional, in pursuit of an inner oracle, seeking salvation through routine and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. The Ji Self in Early Chinese Texts.Deborah A. Sommer - 2012 - In Jason Dockstader Hans-Georg Moller & Gunter Wohlfahrt (eds.), Selfhood East and West: De-Constructions of Identity. Traugott Bautz. pp. 17-45.
    The ji 己self is a site, storehouse, or depot of individuated allotment associated with the possession of things and qualities: wholesome and unwholesome desires (yu 欲) and aversions, emotions such as anxiety, and positive values such as humaneness and reverence. Each person's allotment is unique, and its "contents" are collected, measured, reflected on, and then distributed to others. The Analects, Mencius, Xunzi, Daodejing, and Zhuangzi each have their own vision for negotiating the space between self and other. Works as seemingly (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  37. Diagonalization & Forcing FLEX: From Cantor to Cohen and Beyond. Learning from Leibniz, Cantor, Turing, Gödel, and Cohen; crawling towards AGI.Elan Moritz - manuscript
    The paper continues my earlier Chat with OpenAI’s ChatGPT with a Focused LLM Experiment (FLEX). The idea is to conduct Large Language Model (LLM) based explorations of certain areas or concepts. The approach is based on crafting initial guiding prompts and then follow up with user prompts based on the LLMs’ responses. The goals include improving understanding of LLM capabilities and their limitations culminating in optimized prompts. The specific subjects explored as research subject matter include a) diagonalization techniques as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38.  80
    Self-abduction; oracles, eco-cognition and purpose in life.Jeffrey White - forthcoming - In Selene Arfini (ed.), Essays in Honor of Lorenzo Magnani: Volume 2 - Scientific Cognition, Semiotics, and Computational Agents. Springer.
    This chapter follows Lorenzo Magnani's observation that ongoing commercialization of science and academia impoverishes human potential for discovery. The chapter reviews Magnani on affordance, wonders what is accessible when "good" affordances appear absent, and answers self-affordance. Ecologies optimized for discovery should be optimized for self-affordance. The chapter considers the role of oracle as leading vision for discovery, and proposes a naturalized account of self that is essentially propositional, in pursuit of an inner oracle, seeking salvation through routine and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. Disoriented and alone in the “experience machine” - On Netflix, shared world deceptions and the consequences of deepening algorithmic personalization.Maria Brincker - 2021 - SATS 22 (1):75-96.
    Most online platforms are becoming increasingly algorithmically personalized. The question is if these practices are simply satisfying users preferences or if something is lost in this process. This article focuses on how to reconcile the personalization with the importance of being able to share cultural objects - including fiction – with others. In analyzing two concrete personalization examples from the streaming giant Netflix, several tendencies are observed. One is to isolate users and sometimes entirely eliminate shared world aspects. Another tendency (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  40. On the Claim that a Table-Lookup Program Could Pass the Turing Test.Drew McDermott - 2014 - Minds and Machines 24 (2):143-188.
    The claim has often been made that passing the Turing Test would not be sufficient to prove that a computer program was intelligent because a trivial program could do it, namely, the “Humongous-Table (HT) Program”, which simply looks up in a table what to say next. This claim is examined in detail. Three ground rules are argued for: (1) That the HT program must be exhaustive, and not be based on some vaguely imagined set of tricks. (2) That the HT (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  41.  60
    Efficient Cryptographic Methods for Secure Searchable Data in IoT Frameworks.M. Arulselvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):409-415.
    As the Internet of Things (IoT) continues to expand, ensuring secure and efficient data storage and retrieval becomes a critical challenge. IoT devices, often constrained by limited computational resources, require lightweight encryption protocols that balance security and performance. This paper presents an optimized encryption protocol designed specifically for lightweight, searchable data in IoT environments. The proposed protocol utilizes advanced optimization techniques to enhance the efficiency and security of searchable encryption, enabling rapid data retrieval without compromising the integrity and confidentiality (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. The wisdom-of-crowds: an efficient, philosophically-validated, social epistemological network profiling toolkit.Colin Klein, Marc Cheong, Marinus Ferreira, Emily Sullivan & Mark Alfano - 2023 - In Hocine Cherifi, Rosario Nunzio Mantegna, Luis M. Rocha, Chantal Cherifi & Salvatore Miccichè (eds.), Complex Networks and Their Applications XI: Proceedings of The Eleventh International Conference on Complex Networks and Their Applications: COMPLEX NETWORKS 2022 — Volume 1. Springer.
    The epistemic position of an agent often depends on their position in a larger network of other agents who provide them with information. In general, agents are better off if they have diverse and independent sources. Sullivan et al. [19] developed a method for quantitatively characterizing the epistemic position of individuals in a network that takes into account both diversity and independence; and presented a proof-of-concept, closed-source implementation on a small graph derived from Twitter data [19]. This paper reports on (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43.  76
    Innovative Approaches in Cardiovascular Disease Prediction Through Machine Learning Optimization.M. Arul Selvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):350-359.
    Cardiovascular diseases (CVD) represent a significant cause of morbidity and mortality worldwide, necessitating early detection for effective intervention. This research explores the application of machine learning (ML) algorithms in predicting cardiovascular diseases with enhanced accuracy by integrating optimization techniques. By leveraging data-driven approaches, ML models can analyze vast datasets, identifying patterns and risk factors that traditional methods might overlook. This study focuses on implementing various ML algorithms, such as Decision Trees, Random Forest, Support Vector Machines, and Neural Networks, optimized (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  44. Ethical Bio-Social Human Enhancement: The Vanguard Blueprint of Future Governance and Societal Evolution.Seth Boudreau - manuscript
    This treatise introduces a transformative socio-political paradigm that merges empathy, ethics, equality, and the refinement of excellence to address the novel challenges of the 21st century and beyond. By combining ethical bio-genetic enhancement, empathetic governance, and the cautious reconstruction of socio-political structures, it envisions a society capable of achieving unprecedented precision, efficiency, and unity in governance. This interdisciplinary framework integrates modern science, classical philosophy, and historical lessons to propose a genetically optimized, rigorously educated, and ethically inclined sub-population—the “Electi.” Designed (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. Determining the best of all possible worlds.Lloyd Strickland - 2005 - Journal of Value Inquiry 39 (1):37-47.
    The concept of the best of all possible worlds is widely considered to be incoherent on the grounds that, for any world that might be termed the best, there is always another that is better. I note that underlying this argument is a conviction that the goodness of a world is determined by a single kind of good, the most plausible candidates for which are not maximizable. Against this I suggest that several goods may have to combine to determine the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  46.  64
    Optimizing Data Center Operations with Enhanced SLA-Driven Load Balancing".S. Yoheswari - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):368-376.
    The research introduces a novel framework that incorporates real-time monitoring, dynamic resource allocation, and adaptive threshold settings to ensure consistent SLA adherence while optimizing computing performance. Extensive simulations are conducted using synthetic and real-world datasets to evaluate the performance of the proposed algorithm. The results demonstrate that the optimized load balancing approach outperforms traditional algorithms in terms of SLA compliance, resource utilization, and energy efficiency. The findings suggest that the integration of optimization techniques into load balancing algorithms can significantly (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. Quantum propensities in the brain cortex and free will.Danko D. Georgiev - 2021 - Biosystems 208:104474.
    Capacity of conscious agents to perform genuine choices among future alternatives is a prerequisite for moral responsibility. Determinism that pervades classical physics, however, forbids free will, undermines the foundations of ethics, and precludes meaningful quantification of personal biases. To resolve that impasse, we utilize the characteristic indeterminism of quantum physics and derive a quantitative measure for the amount of free will manifested by the brain cortical network. The interaction between the central nervous system and the surrounding environment is shown to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  48. Toward biologically plausible artificial vision.Mason Westfall - 2023 - Behavioral and Brain Sciences 46:e290.
    Quilty-Dunn et al. argue that deep convolutional neural networks (DCNNs) optimized for image classification exemplify structural disanalogies to human vision. A different kind of artificial vision – found in reinforcement-learning agents navigating artificial three-dimensional environments – can be expected to be more human-like. Recent work suggests that language-like representations substantially improves these agents’ performance, lending some indirect support to the language-of-thought hypothesis (LoTH).
    Download  
     
    Export citation  
     
    Bookmark  
  49.  74
    Cloud-Based Secure Storage: A Framework for Efficient Encryption, Decryption, and Data Dispersion.M. Arul Selvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):427-434.
    The exponential growth of cloud storage has necessitated advanced security measures to protect sensitive data from unauthorized access. Traditional encryption methods provide a layer of security, but they often lack the robustness needed to address emerging threats. This paper introduces an optimized framework for secure cloud storage that integrates data encryption, decryption, and dispersion using cutting-edge optimization techniques. The proposed model enhances data security by first encrypting the data, then dispersing it across multiple cloud servers, ensuring that no single (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. De la selección natural al diseño: una propuesta de extensión del darwinismo formal.Giorgio Airoldi & Cristian Saborido - 2017 - Metatheoria – Revista de Filosofía E Historia de la Ciencia 8 (1):71--80.
    Darwin’s claim that Natural Selection, through optimization of fitness, explains complex biological design has not yet been properly formalized. Alan Grafen’s Formal Darwinism Project aims at providing such a formalization and at demonstrating that fitness maximization is coherent with results from Population Genetics, usually interpreted as denying it. We suggest that Grafen’s proposal suffers from some limitations linked to its concept of design as optimized fitness. In order to overcome these limitations, we propose a classification of evolutionary facts based (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 70