Results for 'Philosophy of quantum mechanics'

911 found
Order:
  1. Philosophy and Interpretations of Quantum Mechanics.Michele Caponigro - manuscript
    This paper is a critical suvery on the philosophy and the Interpretations of Quantum Mechanics.
    Download  
     
    Export citation  
     
    Bookmark  
  2. Quantum Mechanics and the Philosophy of Alfred North Whitehead.Michael Epperson - 2004 - New York: Fordham University Press.
    In Process and Reality and other works, Alfred North Whitehead struggled to come to terms with the impact the new science of quantum mechanics would have on metaphysics. -/- This ambitious book is the first extended analysis of the intricate relationships between relativity theory, quantum mechanics, and Whitehead's cosmology. Michael Epperson illuminates the intersection of science and philosophy in Whitehead's work-and details Whitehead's attempts to fashion an ontology coherent with quantum anomalies. -/- Including a (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  3. Philosophical Foundations of Quantum Mechanics.Alireza Mansouri - 2016 - Tehran: Nashre Ney.
    The revolution brought about by quantum mechanics in the early 20th century was nothing short of remarkable. It shattered the foundational principles of classical physics, giving rise to a plethora of controversial and intriguing conceptual questions. Questions that still perplex and confound the scientific community today. Is the quantum mechanical description of physical reality complete? Are the objects of nature truly inseparable? And most importantly, do objects not have a specific position before measurement, and are there non-causal (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. The Problems of Quantum Mechanics and Possible solutions : Copenhagen interpretation, many worlds interpretation, transactional interpretation, decoherence and quantum logic.Rochelle Marianne Forrester - unknown
    This paper reviews some of the literature on the philosophy of quantum mechanics. The publications involved tend to follow similar patterns of first identifying the mysteries, puzzles or paradoxes of the quantum world, and then discussing the existing interpretations of these matters, before the authors produce their own interpretations, or side with one of the existing views. The paper will show that all interpretations of quantum mechanics involve elements of apparent weirdness. They suggest that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5.  75
    The Prototime Interpretation of Quantum Mechanics.Susan Schneider & Mark Bailey - manuscript
    We propose the Prototime Interpretation of quantum mechanics, which claims that quantum entanglement occurs in a "prototemporal" realm which underlies spacetime. Our paper is tentative and exploratory. The argument form is inference to the best explanation. We claim that the Prototime Interpretation (PI) is worthy of further consideration as a superior explanation for perplexing quantum phenomena such as delayed choice, superposition, the wave-particle duality and nonlocality. In Section One, we introduce the Prototime Interpretation. Section Two identifies (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. The history of quantum mechanics as a decisive argument favoring Einstein over lorentz.R. M. Nugayev - 1985 - Philosophy of Science 52 (1):44-63.
    PHILOSOPHY OF SCIENCE, vol. 52, number 1, pp.44-63. R.M. Nugayev, Kazan State |University, USSR. -/- THE HISTORY OF QUANTUM THEORY AS A DECISIVE ARGUMENT FAVORING EINSTEIN OVER LJRENTZ. -/- Abstract. Einstein’s papers on relativity, quantum theory and statistical mechanics were all part of a single research programme ; the aim was to unify mechanics and electrodynamics. It was this broader program – which eventually split into relativistic physics and quantummmechanics – that superseded Lorentz’s theory. The (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  7. Dirac’s Refined Unification of Quantum Mechanics and Special Relativity: An Intertheoretic Context.Rinat M. Nugayev - 2022 - Teorie Vědy / Theory of Science 44 (1):37-57.
    One of the key episodes of history of modern physics – Paul Dirac’s startling contrivance of the relativistic theory of the electron – is elicited in the context of lucid epistemological model of mature theory change. The peculiar character of Dirac’s synthesis of special relativity and quantum mechanics is revealed by comparison with Einstein’s sophisticated methodology of the General Relativity contrivance. The subtle structure of Dirac’s scientific research program and first and foremost the odd principles that put up (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. (1 other version)The Interpretation of Quantum Mechanics[REVIEW]Andrew Lugg - 1976 - Philosophy of Science 43 (3):449-452.
    Review of M. Audi, The Interpretation of Quantum Mechanics.
    Download  
     
    Export citation  
     
    Bookmark  
  9. Main Concepts in Philosophy of Quantum Information.Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (31):1-4.
    Quantum mechanics involves a generalized form of information, that of quantum information. It is the transfinite generalization of information and re-presentable by transfinite ordinals. The physical world being in the current of time shares the quality of “choice”. Thus quantum information can be seen as the universal substance of the world serving to describe uniformly future, past, and thus the present as the frontier of time. Future is represented as a coherent whole, present as a choice (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. The consistent histories interpretation of quantum mechanics.Edward MacKinnon - unknown
    The consistent histories reformulation of quantum mechanics was developed by Robert Griffiths, given a formal logical systematization by Roland Omn\`{e}s, and under the label `decoherent histories', was independently developed by Murray Gell-Mann and James Hartle and extended to quantum cosmology. Criticisms of CH involve issues of meaning, truth, objectivity, and coherence, a mixture of philosophy and physics. We will briefly consider the original formulation of CH and some basic objections. The reply to these objections, like the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  11. (2 other versions)Linguistic Copenhagen interpretation of quantum mechanics: Quantum Language [Ver. 4].Shiro Ishikawa - manuscript
    Recently we proposed “quantum language" (or,“the linguistic Copenhagen interpretation of quantum mechanics"), which was not only characterized as the metaphysical and linguistic turn of quantum mechanics but also the linguistic turn of Descartes=Kant epistemology. Namely, quantum language is the scientific final goal of dualistic idealism. It has a great power to describe classical systems as well as quantum systems. Thus, we believe that quantum language is the language in which science is written. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  12. Why anything rather than nothing? The answer of quantum mechanics.Vasil Penchev - 2019 - In Aleksandar Feodorov & Ivan Mladenov (eds.), Non/Cognate Approaches: Relation & Representation. "Парадигма". pp. 151-172.
    Many researchers determine the question “Why anything rather than nothing?” as the most ancient and fundamental philosophical problem. Furthermore, it is very close to the idea of Creation shared by religion, science, and philosophy, e.g. as the “Big Bang”, the doctrine of “first cause” or “causa sui”, the Creation in six days in the Bible, etc. Thus, the solution of quantum mechanics, being scientific in fact, can be interpreted also philosophically, and even religiously. However, only the philosophical (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  13. Contextual quantum realism and other interpretations of quantum mechanics.Francois-Igor Pris - 2023 - Moscow: Lenand.
    It is proposed a critique of existing interpretations of quantum mechanics, both anti-realistic and realistic, and, in particular, the Copenhagen interpretation, the interpretations with hidden variables, the metaphysical interpretation of H. Everett’s interpretation, the many-worlds interpretation by D. Wallace, QBism by C. Fuchs, D. Mermin and R. Schack, the relational interpretation by C. Rovelli, neo-Kantian and phenomenological interpretations by M. Bitbol, the informational interpretation by A. Zeilinger, the Nobel Prize Winner in Physics 2022, and others. As is known (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. The Powers of Quantum Mechanics: A Metametaphysical Discussion of the “Logos Approach”.Raoni Wohnrath Arroyo & Jonas R. Becker Arenhart - 2023 - Foundations of Science 28 (3):885-910.
    This paper presents and critically discusses the “logos approach to quantum mechanics” from the point of view of the current debates concerning the relation between metaphysics and science. Due to its alleged direct connection with quantum formalism, the logos approach presents itself as a better alternative for understanding quantum mechanics than other available views. However, we present metaphysical and methodological difficulties that seem to clearly point to a different conclusion: the logos approach is on an (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. The time asymmetry of quantum mechanics and concepts of physical directionality of time Part 1.Andrew Thomas Holster - manuscript
    This is Part 1 of a four part paper, intended to redress some of the most fundamental confusions in the subject of physical time directionality, and represent the concepts accurately. There are widespread fallacies in the subject that need to be corrected in introductory courses for physics students and philosophers. We start in Part 1 by analysing the time reversal symmetry of quantum probability laws. Time reversal symmetry is defined as the property of invariance under the time reversal transformation, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. Introduction: The Metaphysics of Quantum Mechanics.Anna Marmodoro - 2015 - Topoi 34 (2):309-311.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  17. Quantum Mechanics in a Time-Asymmetric Universe: On the Nature of the Initial Quantum State.Eddy Keming Chen - 2021 - British Journal for the Philosophy of Science 72 (4):1155–1183.
    In a quantum universe with a strong arrow of time, we postulate a low-entropy boundary condition to account for the temporal asymmetry. In this paper, I show that the Past Hypothesis also contains enough information to simplify the quantum ontology and define a unique initial condition in such a world. First, I introduce Density Matrix Realism, the thesis that the quantum universe is described by a fundamental density matrix that represents something objective. This stands in sharp contrast (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  18. Why the Many-Worlds Interpretation of quantum mechanics needs more than Hilbert space structure.Meir Hemmo & Orly Shenker - 2020 - In Rik Peels, Jeroen de Ridder & René van Woudenberg (eds.), Scientific Challenges to Common Sense Philosophy. New York: Routledge. pp. 61-70.
    McQueen and Vaidman argue that the Many Worlds Interpretation (MWI) of quantum mechanics provides local causal explanations of the outcomes of experiments in our experience that is due to the total effect of all the worlds together. We show that although the explanation is local in one world, it requires a causal influence that travels across different worlds. We further argue that in the MWI the local nature of our experience is not derivable from the Hilbert space structure, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  19. From the 'Free Will Theorems' to the 'Choice Ontology' of Quantum Mechanics.Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (33):1-10.
    If the concept of “free will” is reduced to that of “choice” all physical world share the latter quality. Anyway the “free will” can be distinguished from the “choice”: The “free will” involves implicitly certain preliminary goal, and the choice is only the mean, by which it can be achieved or not by the one who determines the goal. Thus, for example, an electron has always a choice but not free will unlike a human possessing both. Consequently, and paradoxically, the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. If Quantum Mechanics Is the Solution, What Should the Problem Be?Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (32):1-10.
    The paper addresses the problem, which quantum mechanics resolves in fact. Its viewpoint suggests that the crucial link of time and its course is omitted in understanding the problem. The common interpretation underlain by the history of quantum mechanics sees discreteness only on the Plank scale, which is transformed into continuity and even smoothness on the macroscopic scale. That approach is fraught with a series of seeming paradoxes. It suggests that the present mathematical formalism of (...) mechanics is only partly relevant to its problem, which is ostensibly known. The paper accepts just the opposite: The mathematical solution is absolute relevant and serves as an axiomatic base, from which the real and yet hidden problem is deduced. Wave-particle duality, Hilbert space, both probabilistic and many-worlds interpretations of quantum mechanics, quantum information, and the Schrödinger equation are included in that base. The Schrödinger equation is understood as a generalization of the law of energy conservation to past, present, and future moments of time. The deduced real problem of quantum mechanics is: “What is the universal law describing the course of time in any physical change therefore including any mechanical motion?”. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  21. Quantum Mechanics and 3 N - Dimensional Space.Bradley Monton - 2006 - Philosophy of Science 73 (5):778-789.
    I maintain that quantum mechanics is fundamentally about a system of N particles evolving in three-dimensional space, not the wave function evolving in 3N-dimensional space.
    Download  
     
    Export citation  
     
    Bookmark   66 citations  
  22. Self-locating Uncertainty and the Origin of Probability in Everettian Quantum Mechanics.Charles T. Sebens & Sean M. Carroll - 2016 - British Journal for the Philosophy of Science (1):axw004.
    A longstanding issue in attempts to understand the Everett (Many-Worlds) approach to quantum mechanics is the origin of the Born rule: why is the probability given by the square of the amplitude? Following Vaidman, we note that observers are in a position of self-locating uncertainty during the period between the branches of the wave function splitting via decoherence and the observer registering the outcome of the measurement. In this period it is tempting to regard each branch as equiprobable, (...)
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  23. Quantum Foundations of Statistical Mechanics and Thermodynamics.Orly Shenker - 2022 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge. pp. Ch. 29.
    Statistical mechanics is often taken to be the paradigm of a successful inter-theoretic reduction, which explains the high-level phenomena (primarily those described by thermodynamics) by using the fundamental theories of physics together with some auxiliary hypotheses. In my view, the scope of statistical mechanics is wider since it is the type-identity physicalist account of all the special sciences. But in this chapter, I focus on the more traditional and less controversial domain of this theory, namely, that of explaining (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  24. The quantum mechanical time reversal operator.Andrew Thomas Holster - unknown
    The analysis of the reversibility of quantum mechanics depends upon the choice of the time reversal operator for quantum mechanical states. The orthodox choice for the time reversal operator on QM states is known as the Wigner operator, T*, where * performs complex conjugation. The peculiarity is that this is not simply the unitary time reversal operation, but an anti-unitary operator, involving complex conjugation in addition to ordinary time reversal. The alternative choice is the Racah operator, which (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  25. Quantum Mechanics, Fields, Black Holes, and Ontological Plurality.Gustavo E. Romero - 2024 - Philosophies 9 (4):97-121.
    The ontology behind quantum mechanics has been the subject of endless debate since the theory was formulated some 100 years ago. It has been suggested, at one time or another, that the objects described by the theory may be individual particles, waves, fields, ensembles of particles, observers, and minds, among many other possibilities. I maintain that these disagreements are due in part to a lack of precision in the use of the theory’s various semantic designators. In particular, there (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  26. From Mathematics to Quantum Mechanics - On the Conceptual Unity of Cassirer’s Philosophy of Science.Thomas Mormann - 2015 - In J. Tyler Friedman & Sebastian Luft (eds.), The Philosophy of Ernst Cassirer: A Novel Assessment. Boston: De Gruyter. pp. 31-64.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  27.  51
    Refuting the refutations of the Wigner-Neumann interpretation in quantum mechanics.Spyridon Kakos - 2024 - Harmonia Philosophica Papers.
    One of the most controversial interpretations in quantum mechanics is the Wigner-Neumann interpretation, according to which the superstitions collapse only when a conscious observer observes the quantum system. In general, there is much opposition against this specific interpretation and the reasons are more philosophical than purely scientific. By refuting a specific refutation of the Wigner-Neumann interpretation postulated by Anderson and Carpenter, this paper shows how cancelling the Wigner interpretation is simply not possible at least with our current (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Foundations of Relational Realism: A Topological Approach to Quantum Mechanics and the Philosophy of Nature.Michael Epperson & Elias Zafiris - 2013 - Lanham: Lexington Books. Edited by Elias Zafiris.
    Foundations of Relational Realism presents an intuitive interpretation of quantum mechanics, based on a revised decoherent histories interpretation, structured within a category theoretic topological formalism. -/- If there is a central conceptual framework that has reliably borne the weight of modern physics as it ascends into the twenty-first century, it is the framework of quantum mechanics. Because of its enduring stability in experimental application, physics has today reached heights that not only inspire wonder, but arguably exceed (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  29. Does chance hide necessity ? A reevaluation of the debate ‘determinism - indeterminism’ in the light of quantum mechanics and probability theory.Louis Vervoort - 2013 - Dissertation, University of Montreal
    In this text the ancient philosophical question of determinism (“Does every event have a cause ?”) will be re-examined. In the philosophy of science and physics communities the orthodox position states that the physical world is indeterministic: quantum events would have no causes but happen by irreducible chance. Arguably the clearest theorem that leads to this conclusion is Bell’s theorem. The commonly accepted ‘solution’ to the theorem is ‘indeterminism’, in agreement with the Copenhagen interpretation. Here it is recalled (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. Quantity in Quantum Mechanics and the Quantity of Quantum Information.Vasil Penchev - 2021 - Philosophy of Science eJournal (Elsevier: SSRN) 14 (47):1-10.
    The paper interprets the concept “operator in the separable complex Hilbert space” (particalry, “Hermitian operator” as “quantity” is defined in the “classical” quantum mechanics) by that of “quantum information”. As far as wave function is the characteristic function of the probability (density) distribution for all possible values of a certain quantity to be measured, the definition of quantity in quantum mechanics means any unitary change of the probability (density) distribution. It can be represented as a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. An interpretation of the formalism of quantum mechanics in terms of realism.Arthur Jabs - 1992 - British Journal for the Philosophy of Science 43 (3):405-421.
    We present an alternative to the Copenhagen interpretation of the formalism of nonrelativistic quantum mechanics. The basic difference is that the new inter- pretation is formulated in the language of epistemological realism. It involves a change in some basic physical concepts. Elementary particles are considered as extended objects and nonlocal effects are included. The role of the new concepts in the problems of measurement and of the Einstein-Podolsky-Rosen correlations is described. Experiments to distinguish the proposed interpretation from the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  32. (1 other version)Impact of Relativity Theory and Quantum Mechanics on Philosophy.Devinder Pal Singh - 1988 - Bulletin of Indian Association of Physics Teachers 5 (5):155-159.
    In present times, Science has become more and more contiguous to philosophy due to the advent of Relativity theory and Quantum Mechanics. Relativity has modified our concepts of mass, length, force, law of addition of velocities and simultaneity and has given a new interpretation of the laws of conservation of energy and momentum. It has demonstrated the inner necessity of the idea of dialectic contradiction in the theoretical development of the contents of physics. Quantum Mechanics (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. Quantum Mechanics: Observer and von Neumann Chain.Michele Caponigro - manuscript
    In this brief paper, we argue about the conceptual relationship between the role of observer in quantum mechanics and the von Neumann Chain. -/- .
    Download  
     
    Export citation  
     
    Bookmark  
  34. What Quantum Mechanics Doesn't Show.Justin P. McBrayer & Dugald Owen - 2016 - Teaching Philosophy 39 (2):163-176.
    Students often invoke quantum mechanics in class or papers to make philosophical points. This tendency has been encouraged by pop culture influences like the film What the Bleep do We Know? There is little merit to most of these putative implications. However, it is difficult for philosophy teachers unfamiliar with quantum mechanics to handle these supposed implications in a clear and careful way. This paper is a philosophy of science version of MythBusters. We offer (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. Feyerabend's Reevaluation of Scientific Practice: Quantum Mechanics, Realism and Niels Bohr.Daniel Kuby - 2021 - In Karim Bschir & Jamie Shaw (eds.), Interpreting Feyerabend: Critical Essays. New York, NY: Cambridge University Press. pp. 132-156.
    The aim of this paper is to give an account of the change in Feyerabend's philosophy that made him abandon methodological monism and embrace methodological pluralism. In this paper I offer an explanation in terms of a simple model of 'change of belief through evidence'. My main claim is that the evidence triggering this belief revision can be identified in Feyerabend's technical work in the interpretation of quantum mechanics, in particular his reevaluation of Bohr's contribution to it. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  36.  59
    THE NEW PHILOSOPHY OF SUPERDETERMINISM ON QUANTUM RANDOMNESS.John Bannan - manuscript
    The philosophy of superdeterminism is based on a single scientific fact about the universe, namely that cause and effect in physics are not real. In 2020, accomplished Swedish theoretical physicist, Dr. Johan Hansson published a physics proof using Albert Einstein’s Theory of Special Relativity that our universe is superdeterministic meaning a predetermined static block universe without cause and effect in physics. Scientists have observed purely random behavior at the quantum level, which has led some physicists to claim that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. Against ‘Interpretation’: Quantum Mechanics Beyond Syntax and Semantics.Raoni Wohnrath Arroyo & Gilson Olegario da Silva - 2022 - Axiomathes 32 (6):1243-1279.
    The question “what is an interpretation?” is often intertwined with the perhaps even harder question “what is a scientific theory?”. Given this proximity, we try to clarify the first question to acquire some ground for the latter. The quarrel between the syntactic and semantic conceptions of scientific theories occupied a large part of the scenario of the philosophy of science in the 20th century. For many authors, one of the two currents needed to be victorious. We endorse that such (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  38. The Kochen - Specker theorem in quantum mechanics: a philosophical comment (part 2).Vasil Penchev - 2013 - Philosophical Alternatives 22 (3):74-83.
    The text is a continuation of the article of the same name published in the previous issue of Philosophical Alternatives. The philosophical interpretations of the Kochen- Specker theorem (1967) are considered. Einstein's principle regarding the,consubstantiality of inertia and gravity" (1918) allows of a parallel between descriptions of a physical micro-entity in relation to the macro-apparatus on the one hand, and of physical macro-entities in relation to the astronomical mega-entities on the other. The Bohmian interpretation ( 1952) of quantum (...) proposes that all quantum systems be interpreted as dissipative ones and that the theorem be thus derstood. The conclusion is that the continual representation, by force or (gravitational) field between parts interacting by means of it, of a system is equivalent to their mutual entanglement if representation is discrete. Gravity (force field) and entanglement are two different, correspondingly continual and discrete, images of a single common essence. General relativity can be interpreted as a superluminal generalization of special relativity. The postulate exists of an alleged obligatory difference between a model and reality in science and philosophy. It can also be deduced by interpreting a corollary of the heorem. On the other hand, quantum mechanics, on the basis of this theorem and of V on Neumann's (1932), introduces the option that a model be entirely identified as the modeled reality and, therefore, that absolutely reality be recognized: this is a non-standard hypothesis in the epistemology of science. Thus, the true reality begins to be understood mathematically, i.e. in a Pythagorean manner, for its identification with its mathematical model. A few linked problems are highlighted: the role of the axiom of choice forcorrectly interpreting the theorem; whether the theorem can be considered an axiom; whether the theorem can be considered equivalent to the negation of the axiom. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  39. Towards a process-based approach to consciousness and collapse in quantum mechanics.Raoni Arroyo, Lauro de Matos Nunes Filho & Frederik Moreira Dos Santos - 2024 - Manuscrito 47 (1):2023-0047.
    According to a particular interpretation of quantum mechanics, the causal role of human consciousness in the measuring process is called upon to solve a foundational problem called the “measurement problem.” Traditionally, this interpretation is tied up with the metaphysics of substance dualism. As such, this interpretation of quantum mechanics inherits the dualist’s mind-body problem. Our working hypothesis is that a process-based approach to the consciousness causes collapse interpretation (CCCI) ---leaning on Whitehead’s solution to the mind-body problem--- (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. Relation between relativisitic quantum mechanics and.Han Geurdes - 1995 - Phys Rev E 51 (5):5151-5154.
    The objective of this report is twofold. In the first place it aims to demonstrate that a four-dimensional local U(1) gauge invariant relativistic quantum mechanical Dirac-type equation is derivable from the equations for the classical electromagnetic field. In the second place, the transformational consequences of this local U(1) invariance are used to obtain solutions of different Maxwell equations.
    Download  
     
    Export citation  
     
    Bookmark  
  41. Alyssa Ney and David Z. Albert the wave function: Essays on the metaphysics of quantum mechanics.Craig Callender - 2015 - British Journal for the Philosophy of Science 66 (4):1025-1028.
    Download  
     
    Export citation  
     
    Bookmark  
  42. Quantum leaps in philosophy of mind.David Bourget - 2004 - Journal of Consciousness Studies 11 (12):17--42.
    I discuss the quantum mechanical theory of consciousness and freewill offered by Stapp (1993, 1995, 2000, 2004). First I show that decoherence-based arguments do not work against this theory. Then discuss a number of problems with the theory: Stapp's separate accounts of consciousness and freewill are incompatible, the interpretations of QM they are tied to are questionable, the Zeno effect could not enable freewill as he suggests because weakness of will would then be ubiquitous, and the holism of measurement (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  43. Metaphysical indeterminacy in Everettian quantum mechanics.David Glick & Baptiste Le Bihan - 2024 - European Journal for Philosophy of Science 14 (3):1-22.
    The question of whether Everettian quantum mechanics (EQM) justifies the existence of metaphysical indeterminacy has recently come to the fore. Metaphysical indeterminacy has been argued to emerge from three sources: coherent superpositions, the indefinite number of branches in the quantum multiverse and the nature of these branches. This paper reviews the evidence and concludes that those arguments don’t rely on EQM alone and rest on metaphysical auxiliary assumptions that transcend the physics of EQM. We show how EQM (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  44. Composite Time Concept for Quantum Mechanics and Bio-Psychology.Franz Klaus Jansen - 2018 - Philosophy Study 8 (2):49-66.
    Time has multiple aspects and is difficult to define as one unique entity, which therefore led to multiple interpretations in physics and philosophy. However, if the perception of time is considered as a composite time concept, it can be decomposed into basic invariable components for the perception of progressive and support-fixed time and into secondary components with possible association to unit-defined time or tense. Progressive time corresponds to Bergson’s definition of duration without boundaries, which cannot be divided for measurements. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  45. Cassirer and Dirac on the Symbolic Method in Quantum Mechanics: A Confluence of Opposites.Thomas Ryckman - 2018 - Journal for the History of Analytical Philosophy 6 (3).
    Determinismus und Indeterminismus in der modernen Physik is one of Cassirer’s least known and studied works, despite his own assessment as “one of his most important achievements”. A prominent theme locates quantum mechanics as a yet further step of the tendency within physical theory towards the purely functional theory of the concept and functional characterization of objectivity. In this respect DI can be considered an “update”, like the earlier monograph Zur Einsteinschen Relativitätstheorie: Erkenntnistheoretische Betrachtungen, to Substanzbegriff und Funktionsbegriff, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  46. The UNBELIEVABLE similar ideas between Theise and Menas’ ideas (2016) and my ideas (2002-2008) in Physics and Cognitive Neuroscience and Philosophy (the mind-brain problem, quantum mechanics, etc.).Gabriel Vacariu - manuscript
    The UNBELIEVABLE similar ideas between Theise and Menas’ ideas (2016) and my ideas (2002-2008) in Physics and Cognitive Neuroscience and Philosophy (the mind-brain problem, quantum mechanics, etc.) -/- (2016) Theise D. Neil (Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA) and Kafatos C. Menas (bDepartment of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; cSchmid College of Science & Technology, Chapman University, Orange, CA, USA) (2016), REVIEW - (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. Achilles, the Tortoise and Quantum Mechanics.Alfred Driessen - manuscript
    The four antinomies of Zeno of Elea, especially Achilles and the tortoise continue to be provoking issues which are even now not always satisfactory solved. Aristotle himself used this antinomy to develop his understanding of movement: it is a fluent continuum that has to be treated as a whole. The parts, if any, are only potentially present in the whole. And that is exactly what quantum mechanics is claiming: movement is quantized in contrast to classical mechanics. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. Journey towards Sunyata from Quantum Mechanics.Debajyoti Gangopadhyay - 2009 - In Ramaranjan Mukherjee Mukherjee & Buddhadev Bhattacharya (eds.), Dimensions of Buddhism and Jainism ,Professor Suniti Kumar Pathak felicitation , Vol II. pp. pp 281-289.
    In this article we have tried basically to lay out an outline of possible overlap between the metaphysical standpoints of the Madhyamik Buddhism with the so called Copenhagen interpretation of quantum mechanics. We argued here that , both Madhyamik Buddhism as well as Copenhagen develop some common grounds of skepticism or cautionary notes against the classical intuitive Realist ideology committed to ontological priority of individual . So , though the presiding contexts of Madhyamik Buddhism and quantum (...) are admittedly very different , we can still judge the ontological merit/ implications of ‘the cautions’ on comparative grounds .. And we have argued on this basis here about the possibility to sculpt out some norms of justification for starting a meaningful Dialog between Buddhism and modern Physical science. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  49. Quantum Gravity As the Unification of General Relativity & Quantum Mechanics.Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (32):1-3.
    A nonstandard viewpoint to quantum gravity is discussed. General relativity and quantum mechanics are to be related as two descriptions of the same, e.g. as Heisenberg’s matrix mechanics and Schrödinger’s wave mechanics merged in the contemporary quantum mechanics. From the viewpoint of general relativity one can search for that generalization of relativity implying the in-variance “within – out of” of the same system.
    Download  
     
    Export citation  
     
    Bookmark  
  50. (15 other versions)(August 2022 to 2014) The UNBELIEVABLE similarities between the ideas of some people (2011-2016) and my ideas (2002-2008) in physics (quantum mechanics, cosmology), cognitive neuroscience, philosophy of mind, and philosophy.Gabriel Vacariu - 2022 - Dissertation, Bucharest University
    The main ideas of the EDWs perspective are in Gabriel Vacariu’s PhD thesis posted online by UNSW (Australia) in 2007!!! I have realized the GREATEST discovery in the history of human knowledge: the EDWs! With discovering the EDWs, I have changed everything in Philosophy, Physics and Cognitive Neuroscience! This has been the main reason, so many people have published UNBELIEVABLE similar ideas to my ideas, many years I published my first works! -/- UNBELIEVABLE, many (hundreds) “great” or small thinkers (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 911