Results for 'Relational Quantum Mechanics'

937 found
Order:
  1. Wigner’s friend and Relational Quantum Mechanics: A Reply to Laudisa.Nikki Weststeijn - 2021 - Foundations of Physics 51 (4):1-13.
    Relational Quantum Mechanics is an interpretation of quantum mechanics proposed by Carlo Rovelli. Rovelli argues that, in the same spirit as Einstein’s theory of relativity, physical quantities can only have definite values relative to an observer. Relational Quantum Mechanics is hereby able to offer a principled explanation of the problem of nested measurement, also known as Wigner’s friend. Since quantum states are taken to be relative states that depend on both the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  2. Can We Make Sense of Relational Quantum Mechanics?Quentin Ruyant - 2018 - Foundations of Physics 48 (4):440-455.
    The relational interpretation of quantum mechanics proposes to solve the measurement problem and reconcile completeness and locality of quantum mechanics by postulating relativity to the observer for events and facts, instead of an absolute “view from nowhere”. The aim of this paper is to clarify this interpretation, and in particular, one of its central claims concerning the possibility for an observer to have knowledge about other observer’s events. I consider three possible readings of this claim, (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  3. Quantum Mechanics and Relational Realism: Logical Causality and Wave Function Collapse.Michael Epperson - 2009 - Process Studies 38 (2):340-367.
    By the relational realist interpretation of wave function collapse, the quantum mechanical actualization of potentia is defined as a decoherence-driven process by which each actualization (in “orthodox” terms, each measurement outcome) is conditioned both by physical and logical relations with the actualities conventionally demarked as “environmental” or external to that particular outcome. But by the relational realist interpretation, the actualization-in-process is understood as internally related to these “enironmental” data per the formalism of quantum decoherence. The concept (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  4. Quantum Mechanics and Intentionality.Godehard Brüntrup - 2014 - In Antonella Corradini & Uwe Meixner (eds.), Quantum Physics Meets the Philosophy of Mind: New Essays on the Mind-Body Relation in Quantum-Theoretical Perspective. Boston: De Gruyter. pp. 35-49.
    An essay on the connection between the mind-body-problem and quantum mechanics.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  5. Quantum mechanics in terms of realism.Arthur Jabs - 2017 - arXiv.Org.
    We expound an alternative to the Copenhagen interpretation of the formalism of nonrelativistic quantum mechanics. The basic difference is that the new interpretation is formulated in the language of epistemological realism. It involves a change in some basic physical concepts. The ψ function is no longer interpreted as a probability amplitude of the observed behaviour of elementary particles but as an objective physical field representing the particles themselves. The particles are thus extended objects whose extension varies in time (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  6. Relation between relativisitic quantum mechanics and.Han Geurdes - 1995 - Phys Rev E 51 (5):5151-5154.
    The objective of this report is twofold. In the first place it aims to demonstrate that a four-dimensional local U(1) gauge invariant relativistic quantum mechanical Dirac-type equation is derivable from the equations for the classical electromagnetic field. In the second place, the transformational consequences of this local U(1) invariance are used to obtain solutions of different Maxwell equations.
    Download  
     
    Export citation  
     
    Bookmark  
  7. Quantum Mechanics and the Philosophy of Alfred North Whitehead.Michael Epperson - 2004 - New York: Fordham University Press.
    In Process and Reality and other works, Alfred North Whitehead struggled to come to terms with the impact the new science of quantum mechanics would have on metaphysics. -/- This ambitious book is the first extended analysis of the intricate relationships between relativity theory, quantum mechanics, and Whitehead's cosmology. Michael Epperson illuminates the intersection of science and philosophy in Whitehead's work-and details Whitehead's attempts to fashion an ontology coherent with quantum anomalies. -/- Including a nonspecialist (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  8. RELATIONAL REALISM AND THE ONTOGENETIC UNIVERSE: subject, object, and ontological process in quantum mechanics.Michael Epperson - 2020 - Angelaki 25 (3):108-119.
    Amid the wide variety of interpretations of quantum mechanics, the notion of a fully coherent ontological interpretation has seen a promising evolution over the last few decades. Despite this progress, however, the old dualistic categorical constraints of subjectivity and objectivity, correlate with the metrically restricted definition of local and global, have remained largely in place – a reflection of the broader, persistent inheritance of these comfortable strictures throughout the evolution of modern science. If one traces this inheritance back (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  9. Quantum Mechanical Reality: Entanglement and Decoherence.Avijit Lahiri - manuscript
    We look into the ontology of quantum theory as distinct from that of the classical theory in the sciences. Theories carry with them their own ontology while the metaphysics may remain the same in the background. We follow a broadly Kantian tradition, distinguishing between the noumenal and phenomenal realities where the former is independent of our perception while the latter is assembled from the former by means of fragmentary bits of interpretation. Theories do not tell us how the noumenal (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. Barad, Bohr, and quantum mechanics.Jan Faye & Rasmus Jaksland - 2021 - Synthese 199:8231-8255.
    The last decade has seen an increasing number of references to quantum mechanics in the humanities and social sciences. This development has in particular been driven by Karen Barad’s agential realism: a theoretical framework that, based on Niels Bohr’s interpretation of quantum mechanics, aims to inform social theorizing. In dealing with notions such as agency, power, and embodiment as well as the relation between the material and the discursive level, the influence of agential realism in fields (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  11. Consciousness Studies and Quantum Mechanics.Varanasi Ramabrahmam - 2017 - Http://Scsiscs.Org/Conference/Scienceandscientist/2017/ 5:165-171.
    The limitations and unsuitability of the twentieth century intellectual marvel, the quantum mechanics for the task of unraveling working of human consciousness is critically analyzed. The inbuilt traits of the probabilistic, approximate and imprecise nature of quantum mechanical approach are brought out. -/- The limitations and the unsuitability of using such knowledge for the understanding of precise, correct, finite and definite happenings of activities relating to human consciousness and mind, which are not quantum in nature, are (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. Foundations of Relational Realism: A Topological Approach to Quantum Mechanics and the Philosophy of Nature.Michael Epperson & Elias Zafiris - 2013 - Lanham: Lexington Books. Edited by Elias Zafiris.
    Foundations of Relational Realism presents an intuitive interpretation of quantum mechanics, based on a revised decoherent histories interpretation, structured within a category theoretic topological formalism. -/- If there is a central conceptual framework that has reliably borne the weight of modern physics as it ascends into the twenty-first century, it is the framework of quantum mechanics. Because of its enduring stability in experimental application, physics has today reached heights that not only inspire wonder, but arguably (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  13. Indeterminism in Quantum Mechanics: Beyond and/or Within.Vasil Penchev - 2020 - Development of Innovation eJournal (Elsevier: SSRN) 8 (68):1-5.
    The problem of indeterminism in quantum mechanics usually being considered as a generalization determinism of classical mechanics and physics for the case of discrete (quantum) changes is interpreted as an only mathematical problem referring to the relation of a set of independent choices to a well-ordered series therefore regulated by the equivalence of the axiom of choice and the well-ordering “theorem”. The former corresponds to quantum indeterminism, and the latter, to classical determinism. No other premises (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. Axiomatic foundations of Quantum Mechanics revisited: the case for systems.S. E. Perez-Bergliaffa, Gustavo E. Romero & H. Vucetich - 1996 - International Journal of Theoretical Phyisics 35:1805-1819.
    We present an axiomatization of non-relativistic Quantum Mechanics for a system with an arbitrary number of components. The interpretation of our system of axioms is realistic and objective. The EPR paradox and its relation with realism is discussed in this framework. It is shown that there is no contradiction between realism and recent experimental results.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  15. Possible Perspective for Quantum Mechanics Interpretation: An Essay-Suggestion.Spiridon Dumitru - 2022 - European Journal of Applied Physics, ISSN: 2684-4451 4 (5):55-62.
    The idea of new-type articles, named “Perspectives”, announced recently by some leading journals, is suggested to be approached for the controversial question of quantum mechanics interpretation. Firstly, it is revealed briefly the unsatisfactory situation of the nowadays predominant doctrine about that question. Then some basic elements of the proposed approach are presented. Those elements refer to (i) uncertainty relations, (ii) distinction between own tasks of quantum mechanics and description of quantum measurements, (iii) defects of collapse (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. Achilles, the Tortoise and Quantum Mechanics.Alfred Driessen - manuscript
    The four antinomies of Zeno of Elea, especially Achilles and the tortoise continue to be provoking issues which are even now not always satisfactory solved. Aristotle himself used this antinomy to develop his understanding of movement: it is a fluent continuum that has to be treated as a whole. The parts, if any, are only potentially present in the whole. And that is exactly what quantum mechanics is claiming: movement is quantized in contrast to classical mechanics. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. A Fundamental Duality in the Exact Sciences: The Application to Quantum Mechanics.David Ellerman - 2024 - Foundations 4 (2):175-204.
    There is a fundamental subsets–partitions duality that runs through the exact sciences. In more concrete terms, it is the duality between elements of a subset and the distinctions of a partition. In more abstract terms, it is the reverse-the-arrows of category theory that provides a major architectonic of mathematics. The paper first develops the duality between the Boolean logic of subsets and the logic of partitions. Then, probability theory and information theory (as based on logical entropy) are shown to start (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. The case of quantum mechanics mathematizing reality: the “superposition” of mathematically modelled and mathematical reality: Is there any room for gravity?Vasil Penchev - 2020 - Cosmology and Large-Scale Structure eJournal (Elsevier: SSRN) 2 (24):1-15.
    A case study of quantum mechanics is investigated in the framework of the philosophical opposition “mathematical model – reality”. All classical science obeys the postulate about the fundamental difference of model and reality, and thus distinguishing epistemology from ontology fundamentally. The theorems about the absence of hidden variables in quantum mechanics imply for it to be “complete” (versus Einstein’s opinion). That consistent completeness (unlike arithmetic to set theory in the foundations of mathematics in Gödel’s opinion) can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. A new look at relational holism in quantum mechanics.Matteo Morganti - 2009 - Philosophy of Science 76 (5):1027--1038.
    Teller argued that violations of Bell’s inequalities are to be explained by interpreting quantum entangled systems according to ‘relational holism’, that is, by postulating that they exhibit irreducible (‘inherent’) relations. Teller also suggested a possible application of this idea to quantum statistics. However, the basic proposal was not explained in detail nor has the additional idea about statistics been articulated in further work. In this article, I reconsider relational holism, amending it and spelling it out as (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  20. Quantum mechanics foundations.Bakytzhan Oralbekov - manuscript
    Gravity remains the most elusive field. Its relationship with the electromagnetic field is poorly understood. Relativity and quantum mechanics describe the aforementioned fields, respectively. Bosons and fermions are often credited with responsibility for the interactions of force and matter. It is shown here that fermions factually determine the gravitational structure of the universe, while bosons are responsible for the three established and described forces. Underlying the relationships of the gravitational and electromagnetic fields is a symmetrical probability distribution of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. The Indeterminist Objectivity of Quantum Mechanics Versus the Determinist Subjectivity of Classical Physics.Vasil Penchev - 2020 - Cosmology and Large-Scale Structure eJournal (Elsevier: SSRN) 2 (18):1-5.
    Indeterminism of quantum mechanics is considered as an immediate corollary from the theorems about absence of hidden variables in it, and first of all, the Kochen – Specker theorem. The base postulate of quantum mechanics formulated by Niels Bohr that it studies the system of an investigated microscopic quantum entity and the macroscopic apparatus described by the smooth equations of classical mechanics by the readings of the latter implies as a necessary condition of (...) mechanics the absence of hidden variables, and thus, quantum indeterminism. Consequently, the objectivity of quantum mechanics and even its possibility and ability to study its objects as they are by themselves imply quantum indeterminism. The so-called free-will theorems in quantum mechanics elucidate that the “valuable commodity” of free will is not a privilege of the experimenters and human beings, but it is shared by anything in the physical universe once the experimenter is granted to possess free will. The analogical idea, that e.g. an electron might possess free will to “decide” what to do, scandalized Einstein forced him to exclaim (in a letter to Max Born in 2016) that he would be а shoemaker or croupier rather than a physicist if this was true. Anyway, many experiments confirmed the absence of hidden variables and thus quantum indeterminism in virtue of the objectivity and completeness of quantum mechanics. Once quantum mechanics is complete and thus an objective science, one can ask what this would mean in relation to classical physics and its objectivity. In fact, it divides disjunctively what possesses free will from what does not. Properly, all physical objects belong to the latter area according to it, and their “behavior” is necessary and deterministic. All possible decisions, on the contrary, are concentrated in the experimenters (or human beings at all), i.e. in the former domain not intersecting the latter. One may say that the cost of the determinism and unambiguous laws of classical physics, is the indeterminism and free will of the experimenters and researchers (human beings) therefore necessarily being out of the scope and objectivity of classical physics. This is meant as the “deterministic subjectivity of classical physics” opposed to the “indeterminist objectivity of quantum mechanics”. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  22. The Powers of Quantum Mechanics: A Metametaphysical Discussion of the “Logos Approach”.Raoni Wohnrath Arroyo & Jonas R. Becker Arenhart - 2023 - Foundations of Science 28 (3):885-910.
    This paper presents and critically discusses the “logos approach to quantum mechanics” from the point of view of the current debates concerning the relation between metaphysics and science. Due to its alleged direct connection with quantum formalism, the logos approach presents itself as a better alternative for understanding quantum mechanics than other available views. However, we present metaphysical and methodological difficulties that seem to clearly point to a different conclusion: the logos approach is on an (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. This Year's Nobel Prize (2022) in Physics for Entanglement and Quantum Information: the New Revolution in Quantum Mechanics and Science.Vasil Penchev - 2023 - Philosophy of Science eJournal (Elsevier: SSRN) 18 (33):1-68.
    The paper discusses this year’s Nobel Prize in physics for experiments of entanglement “establishing the violation of Bell inequalities and pioneering quantum information science” in a much wider, including philosophical context legitimizing by the authority of the Nobel Prize a new scientific area out of “classical” quantum mechanics relevant to Pauli’s “particle” paradigm of energy conservation and thus to the Standard model obeying it. One justifies the eventual future theory of quantum gravitation as belonging to the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. Interpretations of Quantum Mechanics and Emptiness.Michele Caponigro & Ravi Prakash - 2009 - NeuroQuantology Journal, June 2009 7 (2):198-203.
    The underlying physical reality is a central notion in the interpretations of quantum mechanics. The a priori physical reality notion affects the corresponding interpretation. This paper explore the possibility to establish a relationship between philosophical concept of physical reality in Nagarjuna's epistemology (emptiness) and the picture of underlying physical reality in Einstein, Rovelli and Zeilinger positions. This analysis brings us to conclude that the notion of property of a quantum object is untenable. We can only speak about (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. The Kochen - Specker theorem in quantum mechanics: a philosophical comment (part 2).Vasil Penchev - 2013 - Philosophical Alternatives 22 (3):74-83.
    The text is a continuation of the article of the same name published in the previous issue of Philosophical Alternatives. The philosophical interpretations of the Kochen- Specker theorem (1967) are considered. Einstein's principle regarding the,consubstantiality of inertia and gravity" (1918) allows of a parallel between descriptions of a physical micro-entity in relation to the macro-apparatus on the one hand, and of physical macro-entities in relation to the astronomical mega-entities on the other. The Bohmian interpretation ( 1952) of quantum (...) proposes that all quantum systems be interpreted as dissipative ones and that the theorem be thus derstood. The conclusion is that the continual representation, by force or (gravitational) field between parts interacting by means of it, of a system is equivalent to their mutual entanglement if representation is discrete. Gravity (force field) and entanglement are two different, correspondingly continual and discrete, images of a single common essence. General relativity can be interpreted as a superluminal generalization of special relativity. The postulate exists of an alleged obligatory difference between a model and reality in science and philosophy. It can also be deduced by interpreting a corollary of the heorem. On the other hand, quantum mechanics, on the basis of this theorem and of V on Neumann's (1932), introduces the option that a model be entirely identified as the modeled reality and, therefore, that absolutely reality be recognized: this is a non-standard hypothesis in the epistemology of science. Thus, the true reality begins to be understood mathematically, i.e. in a Pythagorean manner, for its identification with its mathematical model. A few linked problems are highlighted: the role of the axiom of choice forcorrectly interpreting the theorem; whether the theorem can be considered an axiom; whether the theorem can be considered equivalent to the negation of the axiom. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  26. Discussions on physics, metaphysics and metametaphysics: Interpreting quantum mechanics.Raoni Wohnrath Arroyo - 2020 - Dissertation, Federal University of Santa Catarina
    This thesis inquires what it means to interpret non-relativistic quantum mechanics (QM), and the philosophical limits of this interpretation. In pursuit of a scientific-realist stance, a metametaphysical method is expanded and applied to evaluate rival interpretations of QM, based on the conceptual distinction between ontology and metaphysics, for objective theory choice in metaphysical discussions relating to QM. Three cases are examined, in which this metametaphysical method succeeds in indicating what are the wrong alternatives to interpret QM in metaphysical (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  27. Quantum-information conservation. The problem about “hidden variables”, or the “conservation of energy conservation” in quantum mechanics: A historical lesson for future discoveries.Vasil Penchev - 2020 - Energy Engineering (Energy) eJournal (Elsevier: SSRN) 3 (78):1-27.
    The explicit history of the “hidden variables” problem is well-known and established. The main events of its chronology are traced. An implicit context of that history is suggested. It links the problem with the “conservation of energy conservation” in quantum mechanics. Bohr, Kramers, and Slaters (1924) admitted its violation being due to the “fourth Heisenberg uncertainty”, that of energy in relation to time. Wolfgang Pauli rejected the conjecture and even forecast the existence of a new and unknown then (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Weak Discernibility, Quantum Mechanics and the Generalist Picture.Matteo Morganti - 2008 - Facta Philosophica 10 (1/2):155--183.
    Saunders' recent arguments in favour of the weak discernibility of (certain) quantum particles seem to be grounded in the 'generalist' view that science only provides general descriptions of the worlIn this paper, I introduce the ‘generalist’ perspective and consider its possible justification and philosophical basis; and then look at the notion of weak discernibility. I expand on the criticisms formulated by Hawley (2006) and Dieks and Veerstegh (2008) and explain what I take to be the basic problem: that the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  29. The computable universe: from prespace metaphysics to discrete quantum mechanics.Martin Leckey - 1997 - Dissertation, Monash University
    The central motivating idea behind the development of this work is the concept of prespace, a hypothetical structure that is postulated by some physicists to underlie the fabric of space or space-time. I consider how such a structure could relate to space and space-time, and the rest of reality as we know it, and the implications of the existence of this structure for quantum theory. Understanding how this structure could relate to space and to the rest of reality requires, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  30. Essays on the Metaphysics of Quantum Mechanics.Eddy Keming Chen - 2019 - Dissertation, Rutgers University, New Brunswick
    What is the proper metaphysics of quantum mechanics? In this dissertation, I approach the question from three different but related angles. First, I suggest that the quantum state can be understood intrinsically as relations holding among regions in ordinary space-time, from which we can recover the wave function uniquely up to an equivalence class (by representation and uniqueness theorems). The intrinsic account eliminates certain conventional elements (e.g. overall phase) in the representation of the quantum state. It (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  31. Quantum Mechanics of 'Conscious Energy'.Syed Ismyl Mahmood Rizvi - 2018 - International Journal of Mind, Brain and Cognition 9 (1-2):132-160.
    This paper is aiming to investigate the physical substrate of conscious process. It will attempt to find out: How does conscious process establish relations between their external stimuli and internal stimuli in order to create reality? How does consciousness devoid of new sensory input result to its new quantum effects? And how does conscious process gain mass in brain? This paper will also try to locate the origins of consciousness at the level of neurons along with the quantum (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. Why anything rather than nothing? The answer of quantum mechanics.Vasil Penchev - 2019 - In Aleksandar Feodorov & Ivan Mladenov (eds.), Non/Cognate Approaches: Relation & Representation. "Парадигма". pp. 151-172.
    Many researchers determine the question “Why anything rather than nothing?” as the most ancient and fundamental philosophical problem. Furthermore, it is very close to the idea of Creation shared by religion, science, and philosophy, e.g. as the “Big Bang”, the doctrine of “first cause” or “causa sui”, the Creation in six days in the Bible, etc. Thus, the solution of quantum mechanics, being scientific in fact, can be interpreted also philosophically, and even religiously. However, only the philosophical interpretation (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  33. (1 other version)Impact of Relativity Theory and Quantum Mechanics on Philosophy.Devinder Pal Singh - 1988 - Bulletin of Indian Association of Physics Teachers 5 (5):155-159.
    In present times, Science has become more and more contiguous to philosophy due to the advent of Relativity theory and Quantum Mechanics. Relativity has modified our concepts of mass, length, force, law of addition of velocities and simultaneity and has given a new interpretation of the laws of conservation of energy and momentum. It has demonstrated the inner necessity of the idea of dialectic contradiction in the theoretical development of the contents of physics. Quantum Mechanics has (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. Cassirer and Dirac on the Symbolic Method in Quantum Mechanics: A Confluence of Opposites.Thomas Ryckman - 2018 - Journal for the History of Analytical Philosophy 6 (3).
    Determinismus und Indeterminismus in der modernen Physik is one of Cassirer’s least known and studied works, despite his own assessment as “one of his most important achievements”. A prominent theme locates quantum mechanics as a yet further step of the tendency within physical theory towards the purely functional theory of the concept and functional characterization of objectivity. In this respect DI can be considered an “update”, like the earlier monograph Zur Einsteinschen Relativitätstheorie: Erkenntnistheoretische Betrachtungen, to Substanzbegriff und Funktionsbegriff, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  35. Interpreting Quantum Entanglement: Steps towards Coherentist Quantum Mechanics.Matteo Morganti & Claudio Calosi - 2021 - British Journal for the Philosophy of Science 72 (3):865-891.
    We put forward a new, ‘coherentist’ account of quantum entanglement, according to which entangled systems are characterized by symmetric relations of ontological dependence among the component particles. We compare this coherentist viewpoint with the two most popular alternatives currently on offer—structuralism and holism—and argue that it is essentially different from, and preferable to, both. In the course of this article, we point out how coherentism might be extended beyond the case of entanglement and further articulated.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  36. Floating free from physics: the metaphysics of quantum mechanics.Raoni Wohnrath Arroyo & Jonas Rafael Becker Arenhart - unknown
    We discuss some methodological aspects of the relation between physics and metaphysics by dealing specifically with the case of non-relativistic quantum mechanics. Our main claim is that current attempts to productively integrate quantum mechanics and metaphysics are best seen as approaches of what should be called ‘the metaphysics of science’, which is developed by applying already existing metaphysical concepts to scientific theories. We argue that, in this perspective, metaphysics must be understood as an autonomous discipline. It (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  37. On the Received Realist View of Quantum Mechanics.Nahuel Sznajderhaus - 2016 - Cadernos de História E Filosofia da Ciéncia.
    In this article I defend that an underlying framework exists among those interpretations of quantum mechanics which crucially consider the measurement problem as a central obstacle. I characterise that framework as the Received View on the realist interpretation of quantum mechanics. In particular, I analyse the extent to which two of the most relevant attempts at quantum mechanics, namely, many worlds interpretations and Bohmian mechanics, belong within the Received View. However, I claim that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38.  59
    My God, He Plays Dice! How Albert Einstein Invented Most Of Quantum Mechanics.Bob Doyle - 2019 - Cambridge, MA: I-Phi Press.
    Is it possible that the most famous critic of quantum mechanics actually invented most of its fundamentally important concepts? -/- In his 1905 Brownian motion paper, Einstein quantized matter, proving the existence of atoms. His light quantum hypothesis showed that energy itself comes in particles (photons). He showed energy and matter are interchangeable, E = mc2. In 1905 Einstein was first to see nonlocality and instantaneous action-at-a-distance. In 1907 he saw quantum “jumps” between energy levels in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. On contextual "democratization" of the Copenhagen interpretation of quantum mechanics.Francois-Igor Pris - 2020 - In Второй Международный Конгресс Русского общества истории и философии науки. «Наука как общественное благо.» Том 1. Сборник статей. / ред.: И. Т. Касавин, Л. В. Шиповалова. – Москва: Издательство РОИФН,. Moscow, Russia: pp. 128-131.
    Download  
     
    Export citation  
     
    Bookmark  
  40. Quantum Gravity As the Unification of General Relativity & Quantum Mechanics.Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (32):1-3.
    A nonstandard viewpoint to quantum gravity is discussed. General relativity and quantum mechanics are to be related as two descriptions of the same, e.g. as Heisenberg’s matrix mechanics and Schrödinger’s wave mechanics merged in the contemporary quantum mechanics. From the viewpoint of general relativity one can search for that generalization of relativity implying the in-variance “within – out of” of the same system.
    Download  
     
    Export citation  
     
    Bookmark  
  41. Quantum Entanglement, Bohmian Mechanics, and Humean Supervenience.Elizabeth Miller - 2014 - Australasian Journal of Philosophy 92 (3):567-583.
    David Lewis is a natural target for those who believe that findings in quantum physics threaten the tenability of traditional metaphysical reductionism. Such philosophers point to allegedly holistic entities they take both to be the subjects of some claims of quantum mechanics and to be incompatible with Lewisian metaphysics. According to one popular argument, the non-separability argument from quantum entanglement, any realist interpretation of quantum theory is straightforwardly inconsistent with the reductive conviction that the complete (...)
    Download  
     
    Export citation  
     
    Bookmark   93 citations  
  42. An Investigation on the Basic Conceptual Foundations of Quantum Mechanics by Using the Clifford Algebra.Elio Conte - 2011 - Advanced Studies in Theoretical Physics 5 (11):485-544.
    We review our approach to quantum mechanics adding also some new interesting results. We start by giving proof of two important theorems on the existence of the A(Si) and i,±1 N Clifford algebras. This last algebra gives proof of the von Neumann basic postulates on the quantum measurement explaining thus in an algebraic manner the wave function collapse postulated in standard quantum theory. In this manner we reach the objective to expose a self-consistent version of (...) mechanics. In detail we realize a bare bone skeleton of quantum mechanics recovering all the basic foundations of this theory on an algebraic framework. We give proof of the quantum like Heisenberg uncertainty relations using only the basic support of the Clifford algebra. In addition we demonstrate the well known phenomenon of quantum Mach Zender interference using the same algebraic framework, as well as we give algebraic proof of quantum collapse in some cases of physical interest by direct application of the theorem that we derive to elaborate the i,±1 N algebra. We also discuss the problem of time evolution of quantum systems as well as the changes in space location, in momentum and the linked invariance principles. We are also able to re-derive the basic wave function of standard quantum mechanics by using only the Clifford algebraic approach. In this manner we obtain a full exposition of standard quantum mechanics using only the basic axioms of Clifford algebra. We also discuss more advanced features of quantum mechanics. In detail, we give demonstration of the Kocken-Specher theorem, and also we give an algebraic formulation and explanation of the EPR paradox only using the Clifford algebra. By using the same approach we also derive Bell inequalities. Our formulation is strongly based on the use of idempotents that are contained in Clifford algebra. Their counterpart in quantum mechanics is represented by the projection operators that, as it is well known, are interpreted as logical statements, following the basic von Neumann results. Von Neumann realized a matrix logic on the basis of quantum mechanics. Using the Clifford algebra we are able to invert such result. According to the results previously obtained by Orlov in 1994, we are able to give proof that quantum mechanics derives from logic. We show that indeterminism and quantum interference have their origin in the logic. Therefore, it seems that we may conclude that quantum mechanics, as it appears when investigated by the Clifford algebra, is a two-faced theory in the sense that it looks from one side to “matter per se”, thus to objects but simultaneously also to conceptual entities. We advance the basic conclusion of the paper: There are stages of our reality in which we no more can separate the logic ( and thus cognition and thus conceptual entity) from the features of “matter per se”. In quantum mechanics the logic, and thus the cognition and thus the conceptual entity-cognitive performance, assume the same importance as the features of what is being described. We are at levels of reality in which the truths of logical statements about dynamic variables become dynamic variables themselves so that a profound link is established from its starting in this theory between physics and conceptual entities. Finally, in this approach there is not an absolute definition of logical truths. Transformations , and thus … “redefinitions”…. of truth values are permitted in such scheme as well as the well established invariance principles, clearly indicate . (shrink)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  43. Contextual quantum realism and other interpretations of quantum mechanics.Francois-Igor Pris - 2023 - Moscow: Lenand.
    It is proposed a critique of existing interpretations of quantum mechanics, both anti-realistic and realistic, and, in particular, the Copenhagen interpretation, the interpretations with hidden variables, the metaphysical interpretation of H. Everett’s interpretation, the many-worlds interpretation by D. Wallace, QBism by C. Fuchs, D. Mermin and R. Schack, the relational interpretation by C. Rovelli, neo-Kantian and phenomenological interpretations by M. Bitbol, the informational interpretation by A. Zeilinger, the Nobel Prize Winner in Physics 2022, and others. As is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. Pan(proto)psychism and the Relative-State Interpretation of Quantum Mechanics.Yu Feng - manuscript
    This paper connects the hard problem of consciousness to the interpretation of quantum mechanics. It shows that constitutive Russellian pan(proto)psychism (CRP) is compatible with Everett’s relative-state (RS) interpretation. Despite targeting different problems, CRP and RS are related, for they both establish symmetry between micro- and macrosystems, and both call for a deflationary account of Subject. The paper starts from formal arguments that demonstrate the incompatibility of CRP with alternative interpretations of quantum mechanics, followed by showing that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. Dispositions, relational properties and the quantum world.Mauro Dorato - 2017 - In Maximilien Kistler (ed.), Dispositions and Causal Powers, Routledge, 2017,. London: Routledge. pp. pp.249-270..
    In this paper I examine the role of dispositional properties in the most frequently discussed interpretations of non-relativistic quantum mechanics. After offering some motivation for this project, I briefly characterize the distinction between non-dispositional and dispositional properties in the context of quantum mechanics by suggesting a necessary condition for dispositionality – namely contextuality – and, consequently, a sufficient condition for non-dispositionality, namely non-contextuality. Having made sure that the distinction is conceptually sound, I then analyze the plausibility (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  46. Interpreting Quantum Entanglement: Steps towards Coherentist Quantum Mechanics.Claudio Calosi & Matteo Morganti - 2018 - British Journal for the Philosophy of Science:axy064.
    We put forward a new, ‘coherentist’ account of quantum entanglement, according to which entangled systems are characterized by symmetric relations of ontological dependence among the component particles. We compare this coherentist viewpoint with the two most popular alternatives currently on offer—structuralism and holism—and argue that it is essentially different from, and preferable to, both. In the course of this article, we point out how coherentism might be extended beyond the case of entanglement and further articulated.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  47. Discrete space and the underlying reality of Quantum Mechanics.Sydney Ernest Grimm - manuscript
    Recently there is some new interest in understanding the physical reality behind the formalism of quantum mechanics. This paper relates the known “quantum mysteries” of QM with the properties of the underlying structure of discrete space. DOI: 10.5281/zenodo.5236617.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  48. The Entrainment of Negation: A Possible Prologue for Interpreting Quantum Mechanics through Light.Timothy M. Rogers - manuscript
    An exploration of the hypothesis that quantum mechanics is the interpretative framework of relativity theory.
    Download  
     
    Export citation  
     
    Bookmark  
  49. A Survey on Uncertainty Relations and Quantum Measurements: Arguments for Lucrative Parsimony in Approaches of Matters.Dumitru Spiridon - 2021 - Progress in Physics 17 (1):38-70.
    This survey tries to investigate the truths and deficiencies of prevalent philosophy about Uncertainty Relations (UR) and Quantum Measurements (QMS). The respective philosophy, known as being eclipsed by unfinished controversies, is revealed to be grounded on six basic precepts. But one finds that all the respective precepts are discredited by insurmountable deficiencies. So, in regard to UR, the alluded philosophy discloses oneself to be an unjustified mythology. Then UR appear either as short-lived historical conventions or as simple and limited (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. A Thought Experiment with Light: How the ontological form of quantum mechanics is consequent to the principles of relativity theory.Timothy M. Rogers - manuscript
    An imaginative exploration of space and time in which light mediates the relationship between finitude and the Infinite. Light becomes the creative source through which interiority and exteriority are manifested and brought into synchronicity as time, space and mass. The exploration probes the relational logic of relativity theory using the meta-physical insights of Augustine, Hegel, Levinas, and Peirce.
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 937