Results for 'Schrodinger'

106 found
Order:
  1. What is an elementary particle?Erwin Schrödinger - 1950 - Annual Report of the Board of Regents of The Smithsonian Institution:183-196.
    Schrödinger discusses what an elementary particle is. This essay originally appeared in the journal Endeavour.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  2. Schrödinger’s Fetus.Joona Räsänen - 2020 - Medicine, Health Care and Philosophy 23 (1):125-130.
    This paper defends and develops Elizabeth Harman’s Actual Future Principle with a concept called Schrödinger’s Fetus. I argue that all early fetuses are Schrödinger’s Fetuses: those early fetuses that survive and become conscious beings have full moral status already as early fetuses, but those fetuses that die as early fetuses lack moral status. With Schrödinger’s Fetus, it becomes possible to accept two widely held but contradictory intuitions to be true, and to avoid certain reductiones ad absurdum that pro-life and pro-choice (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  3. Schrödinger's cat in a realist quantum mechanics.Arthur Jabs - 2016 - arXiv.Org.
    There is no paradox with Schrödinger’s cat in a realist interpretation. In particular, a closer look at the temporal aspect shows that the two macroscopic wave functions (alive and dead) of Schrödinger’s cat are not to be compared with two superposed parts of a microscopic quantum wave function.
    Download  
     
    Export citation  
     
    Bookmark  
  4. Killing Schrodinger's Cat: Why Macroscopic Quantum Superpositions Are Impossible In Principle.Andrew Knight - manuscript
    The Schrodinger's Cat and Wigner's Friend thought experiments, which logically follow from the universality of quantum mechanics at all scales, have been repeatedly characterized as possible in principle, if perhaps difficult or impossible for all practical purposes. I show in this paper why these experiments, and interesting macroscopic superpositions in general, are actually impossible in principle. First, no macroscopic superposition can be created via the slow process of natural quantum packet dispersion because all macroscopic objects are inundated with decohering (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Can Schrodinger's Cat Be Really a Quantum Touchstone?Dumitru Spiridon - 2021 - European Journal of Applied Physics 3 (3):29-32.
    It is revealed the invalidity of the idea that famous Schrodinger's cat thought experiment can be a quantum touchstone. The arguments are: (i) the probabilistic incorrectness in the (over)rating of the subject, (ii) the possibility of imagining non-quantum scenarios but completely similar to that experiment (iii) lack of ratified practical tests having genuine essence (i.e., non-counterfeit). So, the aforesaid experiment appears as a simplistic thought exercise without any notable significance for quantum physics.
    Download  
     
    Export citation  
     
    Bookmark  
  6. Derivation of the Schrödinger equation.Shan Gao - manuscript
    It is shown that the heuristic "derivation" of the Schrödinger equation in quantum mechanics textbooks can be turned into a real derivation by resorting to spacetime translation invariance and relativistic invariance.
    Download  
     
    Export citation  
     
    Bookmark  
  7. Schrödinger’s fetus examined.Bruce P. Blackshaw - 2019 - Medicine, Health Care and Philosophy:1-3.
    Joona Räsänen has proposed a concept he calls Schrödinger’s Fetus as a solution to reconciling what he believes are two widely held but contradictory intuitions. I show that Elizabeth Harman’s Actual Future Principle, upon which Schrödinger’s Fetus is based, uses a more convincing account of personhood. I also argue that both Räsänen and Harman, by embracing animalism, weaken their arguments by allowing Don Marquis’ ‘future like ours’ argument for the immorality of abortion into the frame.
    Download  
     
    Export citation  
     
    Bookmark  
  8. Schrodinger's Cat meets McTaggart and the problem of other minds.Paul Merriam - manuscript
    This paper proposes an interpretation of time that is an 'A-theory' in that it incorporates both McTaggart's A-series and his B-series. The A-series characteristics are supposed to be 'ontologically private' analogous to qualia in the problem of other minds and is given a definition. The main idea is that the experimenter and the cat do not share the same A-series characteristics, e.g the same 'now'. So there is no single time at which the cat gets ascribed different states. It is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. McTaggart’s Time, the Schrodinger equation, Minkowski space, and Qualia 3 30 2023.Paul Merriam - manuscript
    1. Schrodinger Equation, fragmentalism, total time T, Euclidean space 2. Does the A-series have the properties of qualia?
    Download  
     
    Export citation  
     
    Bookmark  
  10. Absolute Present, Zen and Schrödinger’s One Mind.Brentyn Ramm & Peter Bruza - 2019 - In J. Acacio de Barros & Carlos Montemayor (eds.), Quanta and Mind: Essays on the Connection Between Quantum Mechanics and Consciousness. Springer Verlag. pp. 189-200.
    Erwin Schrödinger holds a prominent place in the history of science primarily due to his crucial role in the development of quantum physics. What is perhaps lesser known are his insights into subject-object duality, consciousness and mind. He documented himself that these were influenced by the Upanishads, a collection of ancient Hindu spiritual texts. Central to his thoughts in this area is that Mind is only One and there is no separation between subject and object. This chapter aims to bridge (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. McTaggart saves Schrodinger's Cat?Paul Merriam - manuscript
    This paper proposes an interpretation of time that is an 'A-theory' in that it incorporates both McTaggart's A-series and his B-series. The A-series characteristics are supposed to be 'ontologically private' analogous to qualia in the Inverted Spectrum thought experiment and is given a definition. The main idea is that the experimenter and the cat do not share the same A-series characteristics. So there is no single time at which the cat gets ascribed different states. It is proposed one may define (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. Schrödinger’s Cat Paradox Resolution Using GRW Collapse Model: Von Neumann Measurement Postulate Revisited.Jaykov Foukzon - 2017 - Journal of Applied Mathematics and Physics 5 (2):494-521.
    Download  
     
    Export citation  
     
    Bookmark  
  13. Notas sobre o misticismo racional de Erwin Schrödinger.Raoni Wohnrath Arroyo & William Davidans Sversutti - 2022 - Griot : Revista de Filosofia 22 (1):215-226.
    Often referred to as one of the “founding fathers of quantum mechanics”, Erwin Schrödinger’s thoughts were popularized by his contributions to contemporary physics. However, this thinker contributed to the discussion about the limits of philosophical thought and the ultimate foundation of reality, especially in his later writings. This article addresses such discussions, having as a guideline the Schrödingerian notion of ‘consciousness’ and the ethical implications of such a conception.
    Download  
     
    Export citation  
     
    Bookmark  
  14. The Ontic Probability Interpretation of Quantum Theory - Part III: Schrödinger’s Cat and the ‘Basis’ and ‘Measurement’ Pseudo-Problems (2nd edition).Felix Alba-Juez - manuscript
    Most of us are either philosophically naïve scientists or scientifically naïve philosophers, so we misjudged Schrödinger’s “very burlesque” portrait of Quantum Theory (QT) as a profound conundrum. The clear signs of a strawman argument were ignored. The Ontic Probability Interpretation (TOPI) is a metatheory: a theory about the meaning of QT. Ironically, equating Reality with Actuality cannot explain actual data, justifying the century-long philosophical struggle. The actual is real but not everything real is actual. The ontic character of the Probable (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. Not the Measurement Problem's Problem: Black Hole Information Loss with Schrödinger's Cat.Saakshi Dulani - forthcoming - Philosophy of Science.
    Recently, several philosophers and physicists have increasingly noticed the hegemony of unitarity in the black hole information loss discourse and are challenging its legitimacy in the face of the measurement problem. They proclaim that embracing non-unitarity solves two paradoxes for the price of one. Though I share their distaste over the philosophical bias, I disagree with their strategy of still privileging certain interpretations of quantum theory. I argue that information-restoring solutions can be interpretation-neutral because the manifestation of non-unitarity in Hawking's (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. On Some Considerations of Mathematical Physics: May we Identify Clifford Algebra as a Common Algebraic Structure for Classical Diffusion and Schrödinger Equations?Elio Conte - 2012 - Advanced Studies in Theoretical Physics 6 (26):1289-1307.
    We start from previous studies of G.N. Ord and A.S. Deakin showing that both the classical diffusion equation and Schrödinger equation of quantum mechanics have a common stump. Such result is obtained in rigorous terms since it is demonstrated that both diffusion and Schrödinger equations are manifestation of the same mathematical axiomatic set of the Clifford algebra. By using both such ( ) i A S and the i,±1 N algebra, it is evidenced, however, that possibly the two basic equations (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Carl G. Jung’s Synchronicity and Quantum Entanglement: Schrödinger’s Cat ‘Wanders’ Between Chromosomes.Igor V. Limar - 2011 - Neuroquantology 9 (2):313-321.
    One of the most prospective directions of study of C.G. Jung’s synchronicity phenomenon is reviewed considering the latest achievements of modern science. The attention is focused mainly on the quantum entanglement and related phenomena – quantum coherence and quantum superposition. It is shown that the quantum non-locality capable of solving the Einstein-Podolsky-Rosen paradox represents one of the most adequate physical mechanisms in terms of conformity with the Jung’s synchronicity hypothesis. An attempt is made on psychophysiological substantiation of synchronicity within the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. On Cellular Automata Representation of Submicroscopic Physics: From Static Space to Zuse’s Calculating Space Hypothesis.Victor Christianto, Volodymyr Krasnoholovets & Florentin Smarandache - manuscript
    In some recent papers (G. ‘t Hooft and others), it has been argued that quantum mechanics can arise from classical cellular automata. Nonetheless, G. Shpenkov has proved that the classical wave equation makes it possible to derive a periodic table of elements, which is very close to Mendeleyev’s one, and describe also other phenomena related to the structure of molecules. Hence the classical wave equation complements Schrödinger’s equation, which implies the appearance of a cellular automaton molecular model starting from classical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. A Numerical Solution of Ermakov Equation Corresponding to Diffusion Interpretation of Wave Mechanics.Victor Christianto & Florentin Smarandache - manuscript
    It has been long known that a year after Schrödinger published his equation, Madelung also published a hydrodynamics version of Schrödinger equation. Quantum diffusion is studied via dissipative Madelung hydrodynamics. Initially the wave packet spreads ballistically, than passes for an instant through normal diffusion and later tends asymptotically to a sub‐diffusive law. In this paper we will review two different approaches, including Madelung hydrodynamics and also Bohm potential. Madelung formulation leads to diffusion interpretation, which after a generalization yields to Ermakov (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. “Fuzzy time”, a Solution of Unexpected Hanging Paradox (a Fuzzy interpretation of Quantum Mechanics).Farzad Didehvar - manuscript
    Although Fuzzy logic and Fuzzy Mathematics is a widespread subject and there is a vast literature about it, yet the use of Fuzzy issues like Fuzzy sets and Fuzzy numbers was relatively rare in time concept. This could be seen in the Fuzzy time series. In addition, some attempts are done in fuzzing Turing Machines but seemingly there is no need to fuzzy time. Throughout this article, we try to change this picture and show why it is helpful to consider (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  21. Yijing and Energy Fields.David Leong - manuscript
    The sequential patterns of the sixty-four hexagrams in the Yijing, variously known as I Ching (the Book of Changes) are structured to embrace the universe of possibilities, scenarios and probabilities. Each hexagram equates to each moment in space-time. With the arrow of time, a string of hexagrams represent a string of moments. A probability curve can be formed from the string of hexagrams. Physicists call this mathematical entity a wave function which is constantly changing and proliferating. A wave function is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. Wigner’s Friend Depends on Self-Contradictory Quantum Amplification.Andrew Knight - manuscript
    In a recent paper, Zukowski and Markiewicz showed that Wigner’s Friend (and, by extension, Schrodinger’s Cat) can be eliminated as physical possibilities on purely logical grounds. I validate this result and demonstrate the source of the contradiction in a simple experiment in which a scientist S attempts to measure the position of object |O⟩ = |A⟩S +|B⟩S by using measuring device M chosen so that |A⟩M ≈ |A⟩S and |B⟩M ≈ |B⟩S. I assume that the measurement occurs by quantum (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. Postscripts.Paul Merriam - manuscript
    Postscripts to McTaggart meets Schrodinger's Cat.
    Download  
     
    Export citation  
     
    Bookmark  
  24. The Wave Function and Its Evolution.Shan Gao - 2011
    The meaning of the wave function and its evolution are investigated. First, we argue that the wave function in quantum mechanics is a description of random discontinuous motion of particles, and the modulus square of the wave function gives the probability density of the particles being in certain locations in space. Next, we show that the linear non-relativistic evolution of the wave function of an isolated system obeys the free Schrödinger equation due to the requirements of spacetime translation invariance and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. A Case for Lorentzian Relativity.Daniel Shanahan - 2014 - Foundations of Physics 44 (4):349-367.
    The Lorentz transformation (LT) is explained by changes occurring in the wave characteristics of matter as it changes inertial frame. This explanation is akin to that favoured by Lorentz, but informed by later insights, due primarily to de Broglie, regarding the underlying unity of matter and radiation. To show the nature of these changes, a massive particle is modelled as a standing wave in three dimensions. As the particle moves, the standing wave becomes a travelling wave having two factors. One (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  26. If Quantum Mechanics Is the Solution, What Should the Problem Be?Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (32):1-10.
    The paper addresses the problem, which quantum mechanics resolves in fact. Its viewpoint suggests that the crucial link of time and its course is omitted in understanding the problem. The common interpretation underlain by the history of quantum mechanics sees discreteness only on the Plank scale, which is transformed into continuity and even smoothness on the macroscopic scale. That approach is fraught with a series of seeming paradoxes. It suggests that the present mathematical formalism of quantum mechanics is only partly (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  27.  45
    (1 other version)8 Gedankenexperiments for Presentist Fragmentalism.P. Merriam & M. A. Z. Habeeb - manuscript
    Einstein's relativity emerged from his resolution of three key thought experiments. We show that Presentist Fragmentalism can systematically resolve eight fundamental paradoxes, including Einstein's classic train scenario and Schrodinger’s Cat.
    Download  
     
    Export citation  
     
    Bookmark  
  28. No-Boundary Emergence and Book of Change.Sheng Sun & Jianhui Li - 2016 - BIOCOSMOLOGY – NEO-ARISTOTELISM 6 (1):102-120.
    This work attempts to respond to Tomas Aquinas' Cosmological Argument in a way that combines Set Theory with the idea of the ‘Book of Change’. The study defines the ith Cause Set on which to operate on, which leads to the ontological commitment of austerity that the ‘First Cause's Compromise with emergence’ cannot be avoided. It is argued in the present paper that the concept that ‘emergence only consists of Synchronic Emergence and Diachronic Emergence’ should be extended to a broader (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. Macroscopic Quantum Superpositions Cannot Be Measured, Even in Principle.Andrew Knight - manuscript
    I show in this paper why the universality of quantum mechanics at all scales, which implies the possibility of Schrodinger's Cat and Wigner's Friend thought experiments, cannot be experimentally confirmed, and why macroscopic superpositions in general cannot be observed or measured, even in principle. Through the relativity of quantum superposition and the transitivity of correlation, it is shown that from the perspective of an object that is in quantum superposition relative to a macroscopic measuring device and observer, the observer (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. A model for the solution of the quantum measurement problem.Biswaranjan Dikshit - 2019 - Science and Philosophy 7 (2):59-70.
    The basic idea of quantum mechanics is that the property of any system can be in a state of superposition of various possibilities. This state of superposition is also known as wave function and it evolves linearly with time in a deterministic way in accordance with the Schrodinger equation. However, when a measurement is carried out on the system to determine the value of that property, the system instantaneously transforms to one of the eigen states and thus we get (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. On the Role of Inconsistency in Quantum Foundational Debate and Hilbert Space Formulation.Debajyoti Gangopadhyay - 2022 - Quanta 11 (Number 1):28-41.
    This article is intended mainly to develop an expository outline of an inherently inconsistent reasoning in the development of quantum mechanics during 1920s, which set up the background of proposing different variants of quantum logic a bit later. We will discuss here two of the quantum logical variants with reference to Hilbert space formulation, based on the proposals of Bohr and Schrödinger as a result of addressing the same kernel of difficulties and will give a relative comparison. Our presentation is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. What Is Consciousness?Rodney Bartlett - 2015 - Vixra.Org/Author/Rodney_bartlett.
    On the Australian Broadcasting Corporation's current affairs program "7.30 Report" (29/01/2015), presenter Leigh Sales asked Canadian psychiatrist and author Norman Doidge "What is the difference between the mind and the brain?" Dr. Doidge's reply - "Well, the brain is thought to be roughly three pounds of physical material and nobody, to my mind, has adequately defined and established what the contours of mind are - and that includes all the neuroscientists I know, with respect." -/- I’ve recently read interesting thoughts (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. More Notes on Time, After “9 Temporal Knowledge Arguments...”.Paul Merriam - manuscript
    I give more notes about time and quantum mechanics, including notes about entropic time, superdeterminism, retro-causality, Spotlight Presentism, QFT, empirical outcomes of experiments in the present only, and Schrodinger's equation.
    Download  
     
    Export citation  
     
    Bookmark  
  34. Notes 2 A theory of time 6 7 2019.Paul Merriam - manuscript
    A theory of time was proposed in "A theory of time", an early version of which is on PhilPapers. The idea was that the A-series features of a physical system are ontologically private, and this was given a mathematical definition. Also B-series features are ontologically public. This brief note is a detailed rumination on path-integrals and Schrodinger's Cat, in this theory.
    Download  
     
    Export citation  
     
    Bookmark  
  35. The Pauli Objection.Juan Leon & Lorenzo Maccone - 2017 - Foundations of Physics 47 (12):1597-1608.
    Schrödinger’s equation says that the Hamiltonian is the generator of time translations. This seems to imply that any reasonable definition of time operator must be conjugate to the Hamiltonian. Then both time and energy must have the same spectrum since conjugate operators are unitarily equivalent. Clearly this is not always true: normal Hamiltonians have lower bounded spectrum and often only have discrete eigenvalues, whereas we typically desire that time can take any real value. Pauli concluded that constructing a general a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. Reality as a Vector in Hilbert Space.Sean M. Carroll - 2022 - In Valia Allori (ed.), Quantum Mechanics and Fundamentality: Naturalizing Quantum Theory between Scientific Realism and Ontological Indeterminacy. Cham: Springer. pp. 211-224.
    I defend the extremist position that the fundamental ontology of the world consists of a vector in Hilbert space evolving according to the Schrödinger equation. The laws of physics are determined solely by the energy eigenspectrum of the Hamiltonian. The structure of our observed world, including space and fields living within it, should arise as a higher-level emergent description. I sketch how this might come about, although much work remains to be done.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  37. Quantum Theory from Probability Conservation.Mehran Shaghaghi - manuscript
    In this work, we derive the standard formalism of quantum theory by analyzing the behavior of single-variable systems under measurements. These systems, with minimal information capacity, exhibit indeterministic behavior in independent measurements while yielding probabilistically predictable outcomes in dependent measurements. Enforcing probability conservation in the probability transformations leads to the derivation of the Born rule, which subsequently gives rise to the Hilbert space structure and the Schrödinger equation. Additionally, we show that preparing physical systems in coherent states —crucial for observing (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. Computing Fuzzy Time Function.Farzad Didehvar - manuscript
    We consider time as a fuzzy concept. Based on this, the Fuzzy Time-Particle interpretation Of Quantum Mechanics is introduced as an interpretation of Quantum Mechanics [4],[5],[6]. Here, we show how to compute the function associated to Fuzzy time.
    Download  
     
    Export citation  
     
    Bookmark  
  39.  72
    My God, He Plays Dice! How Albert Einstein Invented Most Of Quantum Mechanics.Bob Doyle - 2019 - Cambridge, MA: I-Phi Press.
    Is it possible that the most famous critic of quantum mechanics actually invented most of its fundamentally important concepts? -/- In his 1905 Brownian motion paper, Einstein quantized matter, proving the existence of atoms. His light quantum hypothesis showed that energy itself comes in particles (photons). He showed energy and matter are interchangeable, E = mc2. In 1905 Einstein was first to see nonlocality and instantaneous action-at-a-distance. In 1907 he saw quantum “jumps” between energy levels in matter, six years before (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. A Refined Propensity Account for GRW Theory.Lorenzo Lorenzetti - 2021 - Foundations of Physics 51 (2):1-20.
    Spontaneous collapse theories of quantum mechanics turn the usual Schrödinger equation into a stochastic dynamical law. In particular, in this paper, I will focus on the GRW theory. Two philosophical issues that can be raised about GRW concern (i) the ontology of the theory, in particular the nature of the wave function and its role within the theory, and (ii) the interpretation of the objective probabilities involved in the dynamics of the theory. During the last years, it has been claimed (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  41. Is the quantum world composed of propensitons?Nicholas Maxwell - 2010 - In Mauricio Suárez (ed.), Probabilities, Causes and Propensities in Physics. New York: Springer. pp. 221-243.
    In this paper I outline my propensiton version of quantum theory (PQT). PQT is a fully micro-realistic version of quantum theory that provides us with a very natural possible solution to the fundamental wave/particle problem, and is free of the severe defects of orthodox quantum theory (OQT) as a result. PQT makes sense of the quantum world. PQT recovers all the empirical success of OQT and is, furthermore, empirically testable (although not as yet tested). I argue that Einstein almost put (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  42. What is Mimicked by Biomimicry? Synthetic Cells as Exemplifications of the Threefold Biomimicry Paradox.Hub Zwart - 2019 - Environmental Values 28 (5):527-549.
    This article addresses three paradoxes of biomimicry. First of all: how can biomimicry be as old as technology as such and at the same time decidedly innovative and new? Secondly: how can biomimicry both entail a ‘naturalisation’ of technology and a ‘technification’ of nature? And finally: how can biomimicry be perceived as nature-friendly but at the same time (potentially at least) as a pervasive biotechnological assault on nature? Contemporary (technoscientific) biomimicry, I will argue, aims to mimic nature at the level (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  43. Zeno Goes to Copenhagen: A Dilemma for Measurement-Collapse Interpretations of Quantum Mechanics.David J. Chalmers & Kelvin J. McQueen - 2023 - In M. C. Kafatos, D. Banerji & D. C. Struppa (eds.), Quantum and Consciousness Revisited. DK Publisher.
    A familiar interpretation of quantum mechanics (one of a number of views sometimes labeled the "Copenhagen interpretation'"), takes its empirical apparatus at face value, holding that the quantum wave function evolves by the Schrödinger equation except on certain occasions of measurement, when it collapses into a new state according to the Born rule. This interpretation is widely rejected, primarily because it faces the measurement problem: "measurement" is too imprecise for use in a fundamental physical theory. We argue that this is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. There is no measurement problem for Humeans.Chris Dorst - 2021 - Noûs 57 (2):263-289.
    The measurement problem concerns an apparent conflict between the two fundamental principles of quantum mechanics, namely the Schrödinger equation and the measurement postulate. These principles describe inconsistent behavior for quantum systems in so-called "measurement contexts." Many theorists have thought that the measurement problem can only be resolved by proposing a mechanistic explanation of (genuine or apparent) wavefunction collapse that avoids explicit reference to "measurement." However, I argue here that the measurement problem dissolves if we accept Humeanism about laws of nature. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  45.  73
    Cognition and Mechanics.Malloy Ian - manuscript
    This paper treats cognition as a function of consciousness and seeks to isolate neural correlates of consciousness as physical properties within the brain. We explore fundamental attributes of qualia paired with physical objects, suggesting all physical things have some relative quale. In this sense we require perception as input, a global workspace, cations, a calcium channel, awareness, attention, and a neural network. Given the hypothesized binding frequency of 40 Hz and Libet’s temporal factors, under Schrodinger’s time-dependent equation in n-dimensions (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Quantum Mechanical Reality: Entanglement and Decoherence.Avijit Lahiri - manuscript
    We look into the ontology of quantum theory as distinct from that of the classical theory in the sciences. Theories carry with them their own ontology while the metaphysics may remain the same in the background. We follow a broadly Kantian tradition, distinguishing between the noumenal and phenomenal realities where the former is independent of our perception while the latter is assembled from the former by means of fragmentary bits of interpretation. Theories do not tell us how the noumenal world (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. The Bare Theory Has No Clothes.Jeffrey Bub, Rob Clifton & Bradley Monton - 1998 - In Richard Healey & Geoffrey Hellman (eds.), Quantum Measurement: Beyond Paradox. University of Minnesota Press. pp. 32-51.
    We criticize the bare theory of quantum mechanics -- a theory on which the Schrödinger equation is universally valid, and standard way of thinking about superpositions is correct.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  48.  60
    A-Theory, Gedankenexperiments, and Quantum Gravity.Paul Merriam & M. A. Z. Habeeb - manuscript
    This paper proposes a novel theoretical framework for reconciling quantum mechanics with relativity that leads to a theory of quantum gravity by examining the fundamental nature of time. In the first section we argue that it is possible to perform an experiment for oneself in which, with enough ‘internal technology’ it is possible to distinguish between one’s experience of time on the one hand, and one’s thoughts about one’s experience of time on the other hand. The former gives McTaggart's A-series (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. Ludwig Boltzmann và đầu mối dẫn tới kết nối lý thuyết quan trọng.Minh-Hoang Nguyen - manuscript
    Đồng hành với lý thuyết MT từ 2019, tới 2023 cuốn sách Mindsponge Theory (MT) chính thức ra mắt, đánh dấu một chặng đường cá nhân tôi vừa hoàn thành các nghiên cứu tiến sỹ, vừa tìm tòi phát triển các phương pháp trợ giúp công việc hiệu quả hơn. Trên hành trình xuất hiện rất nhiều thách thức. Nhưng kỳ lạ ở chỗ khó khăn lại xuất hiện ở khái niệm tưởng như rất bé, rất cơ bản, thậm chí (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. space time normalisation in GWRf Theory.Joe Coles - 2023 - International Journal of Quantum Foundations 9 (2).
    Roderich Tumulka’s GRWf theory offers a simple, realist and relativistic solution to the measurement problem of quantum mechanics. It is achieved by the introduction of a stochastic dynamical collapse of the wavefunction. An issue with dynamical collapse theories is that they involve an amendment to the Schrodinger equation; amending the dynamics of such a tried and tested theory is seen by some as problematic. This paper proposes an alteration to GRWf that avoids the need to amend the Schrodinger (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 106