Switch to: References

Add citations

You must login to add citations.
  1. The Challenge of Modeling the Acquisition of Mathematical Concepts.Alberto Testolin - 2020 - Frontiers in Human Neuroscience 14.
    Download  
     
    Export citation  
     
    Bookmark  
  • Neurophilosophy of Number.Hourya Benis Sinaceur - 2017 - International Studies in the Philosophy of Science 31 (1):1-25.
    Neurosciences and cognitive sciences provide us with myriad empirical findings that shed light on hypothesised primitive numerical processes in the brain and in the mind. Yet, the hypotheses on which the experiments are based, and hence the results, depend strongly on sophisticated abstract models used to describe and explain neural data or cognitive representations that supposedly are the empirical roots of primary arithmetical activity. I will question the foundational role of such models. I will even cast doubt upon the search (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Children's Understanding of the Abstract Logic of Counting.Colin Jacobs, Madison Flowers & Julian Jara-Ettinger - 2021 - Cognition 214:104790.
    Download  
     
    Export citation  
     
    Bookmark  
  • Cognitive Structuralism: Explaining the Regularity of the Natural Numbers Progression.Paula Quinon - forthcoming - Review of Philosophy and Psychology:1-23.
    According to one of the most powerful paradigms explaining the meaning of the concept of natural number, natural numbers get a large part of their conceptual content from core cognitive abilities. Carey’s bootstrapping provides a model of the role of core cognition in the creation of mature mathematical concepts. In this paper, I conduct conceptual analyses of various theories within this paradigm, concluding that the theories based on the ability to subitize, or on the ability to approximate quantities, or both, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Mental Magnitudes and Increments of Mental Magnitudes.Matthew Katz - 2013 - Review of Philosophy and Psychology 4 (4):675-703.
    There is at present a lively debate in cognitive psychology concerning the origin of natural number concepts. At the center of this debate is the system of mental magnitudes, an innately given cognitive mechanism that represents cardinality and that performs a variety of arithmetical operations. Most participants in the debate argue that this system cannot be the sole source of natural number concepts, because they take it to represent cardinality approximately while natural number concepts are precise. In this paper, I (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Learning to Represent Exact Numbers.Barbara W. Sarnecka - 2015 - Synthese 198 (Suppl 5):1001-1018.
    This article focuses on how young children acquire concepts for exact, cardinal numbers. I believe that exact numbers are a conceptual structure that was invented by people, and that most children acquire gradually, over a period of months or years during early childhood. This article reviews studies that explore children’s number knowledge at various points during this acquisition process. Most of these studies were done in my own lab, and assume the theoretical framework proposed by Carey. In this framework, the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Mathematical Cognition and Enculturation: Introduction to the Synthese Special Issue.Markus Pantsar - 2020 - Synthese 197 (9):3647-3655.
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark   2 citations  
  • The Enculturated Move From Proto-Arithmetic to Arithmetic.Markus Pantsar - 2019 - Frontiers in Psychology 10.
    The basic human ability to treat quantitative information can be divided into two parts. With proto-arithmetical ability, based on the core cognitive abilities for subitizing and estimation, numerosities can be treated in a limited and/or approximate manner. With arithmetical ability, numerosities are processed (counted, operated on) systematically in a discrete, linear, and unbounded manner. In this paper, I study the theory of enculturation as presented by Menary (2015) as a possible explanation of how we make the move from the proto-arithmetical (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Early Numerical Cognition and Mathematical Processes.Markus Pantsar - 2018 - Theoria : An International Journal for Theory, History and Fundations of Science 33 (2):285-304.
    In this paper I study the development of arithmetical cognition with the focus on metaphorical thinking. In an approach developing on Lakoff and Núñez, I propose one particular conceptual metaphor, the Process → Object Metaphor, as a key element in understanding the development of mathematical thinking.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Spatial Complexity of Character-Based Writing Systems and Arithmetic in Primary School: A Longitudinal Study.Maja Rodic, Tatiana Tikhomirova, Tatiana Kolienko, Sergey Malykh, Olga Bogdanova, Dina Y. Zueva, Elena I. Gynku, Sirui Wan, Xinlin Zhou & Yulia Kovas - 2015 - Frontiers in Psychology 6.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Study on Congruency Effects and Numerical Distance in Fraction Comparison by Expert Undergraduate Students.Nicolás Morales, Pablo Dartnell & David Maximiliano Gómez - 2020 - Frontiers in Psychology 11.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Faculty of Language Integrates the Two Core Systems of Number.Ken Hiraiwa - 2017 - Frontiers in Psychology 8.
    Download  
     
    Export citation  
     
    Bookmark  
  • Linguistic Explanation and Domain Specialization: A Case Study in Bound Variable Anaphora.David Adger & Peter Svenonius - 2015 - Frontiers in Psychology 6.
    Download  
     
    Export citation  
     
    Bookmark  
  • Numerical Ordering Ability Mediates the Relation Between Number-Sense and Arithmetic Competence.Ian M. Lyons & Sian L. Beilock - 2011 - Cognition 121 (2):256-261.
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • The Idea of an Exact Number: Children's Understanding of Cardinality and Equinumerosity.Barbara W. Sarnecka & Charles E. Wright - 2013 - Cognitive Science 37 (8):1493-1506.
    Understanding what numbers are means knowing several things. It means knowing how counting relates to numbers (called the cardinal principle or cardinality); it means knowing that each number is generated by adding one to the previous number (called the successor function or succession), and it means knowing that all and only sets whose members can be placed in one-to-one correspondence have the same number of items (called exact equality or equinumerosity). A previous study (Sarnecka & Carey, 2008) linked children's understanding (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Flexible Intuitions of Euclidean Geometry in an Amazonian Indigene Group.Pierre Pica, Véronique Izard, Elizabeth Spelke & Stanislas Dehaene - 2011 - Pnas 23.
    Kant argued that Euclidean geometry is synthesized on the basis of an a priori intuition of space. This proposal inspired much behavioral research probing whether spatial navigation in humans and animals conforms to the predictions of Euclidean geometry. However, Euclidean geometry also includes concepts that transcend the perceptible, such as objects that are infinitely small or infinitely large, or statements of necessity and impossibility. We tested the hypothesis that certain aspects of nonperceptible Euclidian geometry map onto intuitions of space that (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark   7 citations