Results for 'XAI'

10 found
Order:
  1. What do we want from Explainable Artificial Intelligence (XAI)? – A stakeholder perspective on XAI and a conceptual model guiding interdisciplinary XAI research.Markus Langer, Daniel Oster, Timo Speith, Lena Kästner, Kevin Baum, Holger Hermanns, Eva Schmidt & Andreas Sesing - 2021 - Artificial Intelligence 296 (C):103473.
    Previous research in Explainable Artificial Intelligence (XAI) suggests that a main aim of explainability approaches is to satisfy specific interests, goals, expectations, needs, and demands regarding artificial systems (we call these “stakeholders' desiderata”) in a variety of contexts. However, the literature on XAI is vast, spreads out across multiple largely disconnected disciplines, and it often remains unclear how explainability approaches are supposed to achieve the goal of satisfying stakeholders' desiderata. This paper discusses the main classes of stakeholders calling for explainability (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  2. The Pragmatic Turn in Explainable Artificial Intelligence (XAI).Andrés Páez - 2019 - Minds and Machines 29 (3):441-459.
    In this paper I argue that the search for explainable models and interpretable decisions in AI must be reformulated in terms of the broader project of offering a pragmatic and naturalistic account of understanding in AI. Intuitively, the purpose of providing an explanation of a model or a decision is to make it understandable to its stakeholders. But without a previous grasp of what it means to say that an agent understands a model or a decision, the explanatory strategies will (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  3. Local explanations via necessity and sufficiency: unifying theory and practice.David Watson, Limor Gultchin, Taly Ankur & Luciano Floridi - 2022 - Minds and Machines 32:185-218.
    Necessity and sufficiency are the building blocks of all successful explanations. Yet despite their importance, these notions have been conceptually underdeveloped and inconsistently applied in explainable artificial intelligence (XAI), a fast-growing research area that is so far lacking in firm theoretical foundations. Building on work in logic, probability, and causality, we establish the central role of necessity and sufficiency in XAI, unifying seemingly disparate methods in a single formal framework. We provide a sound and complete algorithm for computing explanatory factors (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  4. The Relations Between Pedagogical and Scientific Explanations of Algorithms: Case Studies from the French Administration.Maël Pégny - manuscript
    The opacity of some recent Machine Learning (ML) techniques have raised fundamental questions on their explainability, and created a whole domain dedicated to Explainable Artificial Intelligence (XAI). However, most of the literature has been dedicated to explainability as a scientific problem dealt with typical methods of computer science, from statistics to UX. In this paper, we focus on explainability as a pedagogical problem emerging from the interaction between lay users and complex technological systems. We defend an empirical methodology based on (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5.  95
    ANNs and Unifying Explanations: Reply to Erasmus, Brunet, and Fisher.Yunus Prasetya - 2022 - Philosophy and Technology 35 (2):1-9.
    In a recent article, Erasmus, Brunet, and Fisher (2021) argue that Artificial Neural Networks (ANNs) are explainable. They survey four influential accounts of explanation: the Deductive-Nomological model, the Inductive-Statistical model, the Causal-Mechanical model, and the New-Mechanist model. They argue that, on each of these accounts, the features that make something an explanation is invariant with regard to the complexity of the explanans and the explanandum. Therefore, they conclude, the complexity of ANNs (and other Machine Learning models) does not make them (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  6. Ameliorating Algorithmic Bias, or Why Explainable AI Needs Feminist Philosophy.Linus Ta-Lun Huang, Hsiang-Yun Chen, Ying-Tung Lin, Tsung-Ren Huang & Tzu-Wei Hung - 2022 - Feminist Philosophy Quarterly 8 (3).
    Artificial intelligence (AI) systems are increasingly adopted to make decisions in domains such as business, education, health care, and criminal justice. However, such algorithmic decision systems can have prevalent biases against marginalized social groups and undermine social justice. Explainable artificial intelligence (XAI) is a recent development aiming to make an AI system’s decision processes less opaque and to expose its problematic biases. This paper argues against technical XAI, according to which the detection and interpretation of algorithmic bias can be handled (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Certifiable AI.Jobst Landgrebe - 2022 - Applied Sciences 12 (3):1050.
    Implicit stochastic models, including both ‘deep neural networks’ (dNNs) and the more recent unsupervised foundational models, cannot be explained. That is, it cannot be determined how they work, because the interactions of the millions or billions of terms that are contained in their equations cannot be captured in the form of a causal model. Because users of stochastic AI systems would like to understand how they operate in order to be able to use them safely and reliably, there has emerged (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. AI, Opacity, and Personal Autonomy.Bram Vaassen - 2022 - Philosophy and Technology 35 (4):1-20.
    Advancements in machine learning have fuelled the popularity of using AI decision algorithms in procedures such as bail hearings, medical diagnoses and recruitment. Academic articles, policy texts, and popularizing books alike warn that such algorithms tend to be opaque: they do not provide explanations for their outcomes. Building on a causal account of transparency and opacity as well as recent work on the value of causal explanation, I formulate a moral concern for opaque algorithms that is yet to receive a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9.  83
    Interpretability and Unification.Adrian Erasmus & Tyler D. P. Brunet - 2022 - Philosophy and Technology 35 (2):1-6.
    In a recent reply to our article, “What is Interpretability?,” Prasetya argues against our position that artificial neural networks are explainable. It is claimed that our indefeasibility thesis—that adding complexity to an explanation of a phenomenon does not make the phenomenon any less explainable—is false. More precisely, Prasetya argues that unificationist explanations are defeasible to increasing complexity, and thus, we may not be able to provide such explanations of highly complex AI models. The reply highlights an important lacuna in our (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  10. Towards Knowledge-driven Distillation and Explanation of Black-box Models.Roberto Confalonieri, Guendalina Righetti, Pietro Galliani, Nicolas Toquard, Oliver Kutz & Daniele Porello - 2021 - In Proceedings of the Workshop on Data meets Applied Ontologies in Explainable {AI} {(DAO-XAI} 2021) part of Bratislava Knowledge September {(BAKS} 2021), Bratislava, Slovakia, September 18th to 19th, 2021. CEUR 2998.
    We introduce and discuss a knowledge-driven distillation approach to explaining black-box models by means of two kinds of interpretable models. The first is perceptron (or threshold) connectives, which enrich knowledge representation languages such as Description Logics with linear operators that serve as a bridge between statistical learning and logical reasoning. The second is Trepan Reloaded, an ap- proach that builds post-hoc explanations of black-box classifiers in the form of decision trees enhanced by domain knowledge. Our aim is, firstly, to target (...)
    Download  
     
    Export citation  
     
    Bookmark