Results for 'Zermelo'

26 found
Order:
  1. Zermelian Extensibility.Andrew Bacon - manuscript
    According to an influential idea in the philosophy of set theory, certain mathematical concepts, such as the notion of a well-order and set, are indefinitely extensible. Following Parsons (1983), this has often been cashed out in modal terms. This paper explores instead an extensional articulation of the idea, formulated in higher-order logic, that flat-footedly formalizes some remarks of Zermelo. The resulting picture is incompatible with the idea that the entire universe can be well-ordered, but entirely consistent with the idea (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. Set Theory, Topology, and the Possibility of Junky Worlds.Thomas Mormann - 2014 - Notre Dame Journal of Formal Logic 55 (1): 79 - 90.
    A possible world is a junky world if and only if each thing in it is a proper part. The possibility of junky worlds contradicts the principle of general fusion. Bohn (2009) argues for the possibility of junky worlds, Watson (2010) suggests that Bohn‘s arguments are flawed. This paper shows that the arguments of both authors leave much to be desired. First, relying on the classical results of Cantor, Zermelo, Fraenkel, and von Neumann, this paper proves the possibility of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  3. Wide Sets, ZFCU, and the Iterative Conception.Christopher Menzel - 2014 - Journal of Philosophy 111 (2):57-83.
    The iterative conception of set is typically considered to provide the intuitive underpinnings for ZFCU (ZFC+Urelements). It is an easy theorem of ZFCU that all sets have a definite cardinality. But the iterative conception seems to be entirely consistent with the existence of “wide” sets, sets (of, in particular, urelements) that are larger than any cardinal. This paper diagnoses the source of the apparent disconnect here and proposes modifications of the Replacement and Powerset axioms so as to allow for the (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  4. Categoricity by convention.Julien Murzi & Brett Topey - 2021 - Philosophical Studies 178 (10):3391-3420.
    On a widespread naturalist view, the meanings of mathematical terms are determined, and can only be determined, by the way we use mathematical language—in particular, by the basic mathematical principles we’re disposed to accept. But it’s mysterious how this can be so, since, as is well known, minimally strong first-order theories are non-categorical and so are compatible with countless non-isomorphic interpretations. As for second-order theories: though they typically enjoy categoricity results—for instance, Dedekind’s categoricity theorem for second-order PA and Zermelo’s (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  5. Maximally Consistent Sets of Instances of Naive Comprehension.Luca Incurvati & Julien Murzi - 2017 - Mind 126 (502).
    Paul Horwich (1990) once suggested restricting the T-Schema to the maximally consistent set of its instances. But Vann McGee (1992) proved that there are multiple incompatible such sets, none of which, given minimal assumptions, is recursively axiomatizable. The analogous view for set theory---that Naïve Comprehension should be restricted according to consistency maxims---has recently been defended by Laurence Goldstein (2006; 2013). It can be traced back to W.V.O. Quine(1951), who held that Naïve Comprehension embodies the only really intuitive conception of set (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  6. The development of mathematical logic from Russell to Tarski, 1900-1935.Paolo Mancosu, Richard Zach & Calixto Badesa - 2009 - In Leila Haaparanta (ed.), The Development of Modern Logic. Oxford University Press.
    The period from 1900 to 1935 was particularly fruitful and important for the development of logic and logical metatheory. This survey is organized along eight "itineraries" concentrating on historically and conceptually linked strands in this development. Itinerary I deals with the evolution of conceptions of axiomatics. Itinerary II centers on the logical work of Bertrand Russell. Itinerary III presents the development of set theory from Zermelo onward. Itinerary IV discusses the contributions of the algebra of logic tradition, in particular, (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  7. Schemata: The concept of schema in the history of logic.John Corcoran - 2006 - Bulletin of Symbolic Logic 12 (2):219-240.
    The syllogistic figures and moods can be taken to be argument schemata as can the rules of the Stoic propositional logic. Sentence schemata have been used in axiomatizations of logic only since the landmark 1927 von Neumann paper [31]. Modern philosophers know the role of schemata in explications of the semantic conception of truth through Tarski’s 1933 Convention T [42]. Mathematical logicians recognize the role of schemata in first-order number theory where Peano’s second-order Induction Axiom is approximated by Herbrand’s Induction-Axiom (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  8. The entanglement of logic and set theory, constructively.Laura Crosilla - 2022 - Inquiry: An Interdisciplinary Journal of Philosophy 65 (6).
    ABSTRACT Theories of sets such as Zermelo Fraenkel set theory are usually presented as the combination of two distinct kinds of principles: logical and set-theoretic principles. The set-theoretic principles are imposed ‘on top’ of first-order logic. This is in agreement with a traditional view of logic as universally applicable and topic neutral. Such a view of logic has been rejected by the intuitionists, on the ground that quantification over infinite domains requires the use of intuitionistic rather than classical logic. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  9. Georg Cantor’s Ordinals, Absolute Infinity & Transparent Proof of the Well-Ordering Theorem.Hermann G. W. Burchard - 2019 - Philosophy Study 9 (8).
    Georg Cantor's absolute infinity, the paradoxical Burali-Forti class Ω of all ordinals, is a monstrous non-entity for which being called a "class" is an undeserved dignity. This must be the ultimate vexation for mathematical philosophers who hold on to some residual sense of realism in set theory. By careful use of Ω, we can rescue Georg Cantor's 1899 "proof" sketch of the Well-Ordering Theorem––being generous, considering his declining health. We take the contrapositive of Cantor's suggestion and add Zermelo's choice (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10.  16
    Hyperintensional Ω-Logic.Timothy Bowen - 2019 - In Matteo Vincenzo D'Alfonso & Don Berkich (eds.), On the Cognitive, Ethical, and Scientific Dimensions of Artificial Intelligence. Springer Verlag.
    This essay examines the philosophical significance of $\Omega$-logic in Zermelo-Fraenkel set theory with choice (ZFC). The categorical duality between coalgebra and algebra permits Boolean-valued algebraic models of ZFC to be interpreted as coalgebras. The hyperintensional profile of $\Omega$-logical validity can then be countenanced within a coalgebraic logic. I argue that the philosophical significance of the foregoing is two-fold. First, because the epistemic and modal and hyperintensional profiles of $\Omega$-logical validity correspond to those of second-order logical consequence, $\Omega$-logical validity is (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  11.  32
    An Approach to QST-based Nmatrices Semantics.Juan Pablo Jorge, Federico Holik & Décio Krause - 2023 - Principia: An International Journal of Epistemology 27 (3):539-607.
    This paper introduces the theory QST of quasets as a formal basis for the Nmatrices. The main aim is to construct a system of Nmatrices by substituting standard sets by quasets. Since QST is a conservative extension of ZFA (the Zermelo-Fraenkel set theory with Atoms), it is possible to obtain generalized Nmatrices (Q-Nmatrices). Since the original formulation of QST is not completely adequate for the developments we advance here, some possible amendments to the theory are also considered. One of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. Laskettavuuden teorian varhaishistoria.Panu Raatikainen - 1995 - In Älyn oppihistoria – matka logiikan, psykologian ja tekoälyn juurille. Espoo: Finnish Artificial Intelligence Society.
    Nykyaikaisen logiikan keskeisenä tutkimuskohteena ovat erilaiset formalisoidut teoriat. Erityisesti vuosisadan vaihteen aikoihin matematiikan perusteiden tutkimuksessa ilmaantuneiden hämmentävien paradoksien (Russell 1902, 1903) jälkeen (ks. kuitenkin jo Frege 1879, Dedekind 1888, Peano 1889; vrt. Wang 1957) keskeiset matemaattiset teoriat on pyritty tällaisten vaikeuksien välttämiseksi uudelleen muotoilemaan täsmällisesti keinotekoisessa symbolikielessä, jonka lauseenmuodostussäännöt on täsmällisesti ja yksikäsitteisesti määrätty. Edelleen teoriat on pyritty aksiomatisoimaan, ts. on pyritty antamaan joukko peruslauseita, joista kaikki muut - tai ainakin mahdollisimman monet - teorian todet lauseet voidaan loogisesti johtaa tarkoin (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. Surprises in logic.John Corcoran & William Frank - 2013 - Bulletin of Symbolic Logic 19 (3):253.
    JOHN CORCORAN AND WILIAM FRANK. Surprises in logic. Bulletin of Symbolic Logic. 19 253. Some people, not just beginning students, are at first surprised to learn that the proposition “If zero is odd, then zero is not odd” is not self-contradictory. Some people are surprised to find out that there are logically equivalent false universal propositions that have no counterexamples in common, i. e., that no counterexample for one is a counterexample for the other. Some people would be surprised to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. Review of: Garciadiego, A., "Emergence of...paradoxes...set theory", Historia Mathematica (1985), in Mathematical Reviews 87j:01035.John Corcoran - 1987 - MATHEMATICAL REVIEWS 87 (J):01035.
    DEFINING OUR TERMS A “paradox" is an argumentation that appears to deduce a conclusion believed to be false from premises believed to be true. An “inconsistency proof for a theory" is an argumentation that actually deduces a negation of a theorem of the theory from premises that are all theorems of the theory. An “indirect proof of the negation of a hypothesis" is an argumentation that actually deduces a conclusion known to be false from the hypothesis alone or, more commonly, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. Non-mathematical Content by Mathematical Means.Sam Adam-Day - manuscript
    In this paper, I consider the use of mathematical results in philosophical arguments arriving at conclusions with non-mathematical content, with the view that in general such usage requires additional justification. As a cautionary example, I examine Kreisel’s arguments that the Continuum Hypothesis is determined by the axioms of Zermelo-Fraenkel set theory, and interpret Weston’s 1976 reply as showing that Kreisel fails to provide sufficient justification for the use of his main technical result. If we take the perspective that mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. El Axioma de elección en el quehacer matemático contemporáneo.Franklin Galindo & Randy Alzate - 2022 - Aitías 2 (3):49-126.
    Para matemáticos interesados en problemas de fundamentos, lógico-matemáticos y filósofos de la matemática, el axioma de elección es centro obligado de reflexión, pues ha sido considerado esencial en el debate dentro de las posiciones consideradas clásicas en filosofía de la matemática (intuicionismo, formalismo, logicismo, platonismo), pero también ha tenido una presencia fundamental para el desarrollo de la matemática y metamatemática contemporánea. Desde una posición que privilegia el quehacer matemático, nos proponemos mostrar los aportes que ha tenido el axioma en varias (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Парадоксът на Скулем и квантовата информация. Относителност на пълнота по Гьодел.Vasil Penchev - 2011 - Philosophical Alternatives 20 (2):131-147.
    In 1922, Thoralf Skolem introduced the term of «relativity» as to infinity от set theory. Не demonstrated Ьу Zermelo 's axiomatics of set theory (incl. the axiom of choice) that there exists unintended interpretations of anу infinite set. Тhus, the notion of set was also «relative». We сan apply his argurnentation to Gödel's incompleteness theorems (1931) as well as to his completeness theorem (1930). Then, both the incompleteness of Реапо arithmetic and the completeness of first-order logic tum out to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. Heisenberg quantum mechanics, numeral set-theory and.Han Geurdes - manuscript
    In the paper we will employ set theory to study the formal aspects of quantum mechanics without explicitly making use of space-time. It is demonstrated that von Neuman and Zermelo numeral sets, previously efectively used in the explanation of Hardy’s paradox, follow a Heisenberg quantum form. Here monadic union plays the role of time derivative. The logical counterpart of monadic union plays the part of the Hamiltonian in the commutator. The use of numerals and monadic union in the classical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. ""Lambda theory: Introduction of a constant for" nothing" into set theory, a model of consistency and most noticeable conclusions.Laurent Dubois - 2013 - Logique Et Analyse 56 (222):165-181.
    The purpose of this article is to present several immediate consequences of the introduction of a new constant called Lambda in order to represent the object ``nothing" or ``void" into a standard set theory. The use of Lambda will appear natural thanks to its role of condition of possibility of sets. On a conceptual level, the use of Lambda leads to a legitimation of the empty set and to a redefinition of the notion of set. It lets also clearly appear (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  20. Classical Probability, Shakespearean Sonnets, and Multiverse Hypotheses.James Goetz - 2006 - International Society for Complexity, Information, and Design Archive 2006.
    We evaluate classical probability in relation to the random generation of a Shakespearean sonnet by a typing monkey and the random generation of universes in a World Ensemble based on various multiverse models involving eternal inflation. We calculate that it would take a monkey roughly 10^942 years to type a Shakespearean sonnet, which pushes the scenario into a World Ensemble. The evaluation of a World Ensemble based on various models of eternal inflation suggests that there is no middle ground between (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  21.  59
    Inconsistency of ℕ with the set union operation.Enrico Pier Giorgio Cadeddu - manuscript
    Considering the axiom of infinity, then N and Peano axioms, together a list of N subsets, inclusion relation and union operation, a contradiction is obtained.
    Download  
     
    Export citation  
     
    Bookmark  
  22.  58
    Inconsistency of ℕ and the question of infinity.Enrico Pier Giorgio Cadeddu - manuscript
    In the article ”Inconsistency of N from a not-finitist point of view” we have shown the inconsistency of N, going through a denial. Here we delete this indirect step and essentially repeat the same proof. Contextually we find a contradiction about natural number definition. Then we discuss around the rejection of infinity.
    Download  
     
    Export citation  
     
    Bookmark  
  23. Deepening the Automated Search for Gödel's Proofs.Adam Conkey - unknown
    Gödel's incompleteness theorems establish the stunning result that mathematics cannot be fully formalized and, further, that any formal system containing a modicum of number or set theory cannot establish its own consistency. Wilfried Sieg and Clinton Field, in their paper Automated Search for Gödel's Proofs, presented automated proofs of Gödel's theorems at an abstract axiomatic level; they used an appropriate expansion of the strategic considerations that guide the search of the automated theorem prover AProS. The representability conditions that allow the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. A mathematical theory of truth and an application to the regress problem.S. Heikkilä - forthcoming - Nonlinear Studies 22 (2).
    In this paper a class of languages which are formal enough for mathematical reasoning is introduced. Its languages are called mathematically agreeable. Languages containing a given MA language L, and being sublanguages of L augmented by a monadic predicate, are constructed. A mathematical theory of truth (shortly MTT) is formulated for some of those languages. MTT makes them fully interpreted MA languages which posses their own truth predicates. MTT is shown to conform well with the eight norms formulated for theories (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  25. From Traditional Set Theory – that of Cantor, Hilbert , Gödel, Cohen – to Its Necessary Quantum Extension.Edward G. Belaga - manuscript
    The original purpose of the present study, 2011, started with a preprint «On the Probable Failure of the Uncountable Power Set Axiom», 1988, is to save from the transfinite deadlock of higher set theory the jewel of mathematical Continuum — this genuine, even if mostly forgotten today raison d’être of all traditional set-theoretical enterprises to Infinity and beyond, from Georg Cantor to David Hilbert to Kurt Gödel to W. Hugh Woodin to Buzz Lightyear.
    Download  
     
    Export citation  
     
    Bookmark  
  26. A theory of truth for a class of mathematical languages and an application.S. Heikkilä - manuscript
    In this paprer a class of so called mathematically acceptable (shortly MA) languages is introduced First-order formal languages containing natural numbers and numerals belong to that class. MA languages which are contained in a given fully interpreted MA language augmented by a monadic predicate are constructed. A mathematical theory of truth (shortly MTT) is formulated for some of these languages. MTT makes them fully interpreted MA languages which posses their own truth predicates, yielding consequences to philosophy of mathematics. MTT is (...)
    Download  
     
    Export citation  
     
    Bookmark