Results for 'irreducible quantum randomness'

1000+ found
Order:
  1. God is Random: A Novel Argument for the Existence of God.Serkan Zorba - 2016 - European Journal of Science and Theology 12 (1):51-67.
    Applying the concepts of Kolmogorov-Chaitin complexity and Turing’s uncomputability from the computability and algorithmic information theories to the irreducible and incomputable randomness of quantum mechanics, a novel argument for the existence of God is presented. Concepts of ‘transintelligence’ and ‘transcausality’ are introduced, and from them, it is posited that our universe must be epistemologically and ontologically an open universe. The proposed idea also proffers a new perspective on the nonlocal nature and the infamous wave-function-collapse problem of (...) mechanics. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  2. Can we close the Bohr-Einstein quantum debate.Marian Kupczynski - 2017 - Philosophical Transactions of the Royal Society A 375:20160392..
    Recent experiments allowed concluding that Bell-type inequalities are indeed violated thus it is important to understand what it means and how can we explain the existence of strong correlations between outcomes of distant measurements. Do we have to announce that: Einstein was wrong, Nature is nonlocal and nonlocal correlations are produced due to the quantum magic and emerge, somehow, from outside space-time? Fortunately such conclusions are unfounded because if supplementary parameters describing measuring instruments are correctly incorporated in a theoretical (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  3. What Have Google’s Random Quantum Circuit Simulation Experiments Demonstrated about Quantum Supremacy?Jack K. Horner & John Symons - 2021 - In Hamid R. Arabnia, Leonidas Deligiannidis, Fernando G. Tinetti & Quoc-Nam Tran (eds.), Advances in Software Engineering, Education, and E-Learning: Proceedings From Fecs'20, Fcs'20, Serp'20, and Eee'20. Springer.
    Quantum computing is of high interest because it promises to perform at least some kinds of computations much faster than classical computers. Arute et al. 2019 (informally, “the Google Quantum Team”) report the results of experiments that purport to demonstrate “quantum supremacy” – the claim that the performance of some quantum computers is better than that of classical computers on some problems. Do these results close the debate over quantum supremacy? We argue that they do (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. Our Universe’s Fingerprint: Why Zero Point Radiation Occurs and Are Quantum Fluctuations Truly Random?David Angell - manuscript
    Absolute nothing is the absence of our universe and its laws. Without these rules, nothingness has infinite potential. This implies that within the infinite probability of nothing, infinity can emerge. This would be expressed through infinite universes like our own. Infinite of these universes will differ by several particles, appearing and disappearing for no reason other than fulfilling every possibility. This universe is the product of a greater realisation of infinity and we can test this theory via the measurement of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Quantum Indeterminism, Free Will, and Self-Causation.Marco Masi - 2023 - Journal of Consciousness Studies 30 (5-6):32–56.
    A view that emancipates free will by means of quantum indeterminism is frequently rejected based on arguments pointing out its incompatibility with what we know about quantum physics. However, if one carefully examines what classical physical causal determinism and quantum indeterminism are according to physics, it becomes clear what they really imply–and, especially, what they do not imply–for agent-causation theories. Here, we will make necessary conceptual clarifications on some aspects of physical determinism and indeterminism, review some of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  6. Quantum Mechanical Reality: Entanglement and Decoherence.Avijit Lahiri - manuscript
    We look into the ontology of quantum theory as distinct from that of the classical theory in the sciences. Theories carry with them their own ontology while the metaphysics may remain the same in the background. We follow a broadly Kantian tradition, distinguishing between the noumenal and phenomenal realities where the former is independent of our perception while the latter is assembled from the former by means of fragmentary bits of interpretation. Theories do not tell us how the noumenal (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Quantum Molinism.Thomas Harvey, Frederick Kroon, Karl Svozil & Cristian Calude - 2022 - European Journal for Philosophy of Religion 14 (3):167-194.
    In this paper we consider the possibility of a Quantum Molinism : such a view applies an analogue of the Molinistic account of free will‘s compatibility with God’s foreknowledge to God’s knowledge of (supposedly) indeterministic events at a quantum level. W e ask how (and why) a providential God could care for and know about a world with this kind of indeterminacy. We consider various formulations of such a Quantum Molinism, and after rejecting a number of options (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. Can (quantum) information be sorted out from quantum mechanics?Michele Caponigro & Stefano Mancini - 2009 - NQ Journal.
    We shall draw an affirmative answer to the question posed in the title. The key point will be a quantum description of physical reality. Once fixed at ontic level two basic elements, namely the laws of physics and the matter, we argue that the underlying physical reality emerges from the interconnection between these two elements. We consider any physical process, including measurement, modeled by unitary evolution. In this context, we will deduce quantum random- ness as a consequence of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. Quantum mechanics as a deterministic theory of a continuum of worlds.Kim Joris Boström - 2015 - Quantum Studies: Mathematics and Foundations 2 (3):315-347.
    A non-relativistic quantum mechanical theory is proposed that describes the universe as a continuum of worlds whose mutual interference gives rise to quantum phenomena. A logical framework is introduced to properly deal with propositions about objects in a multiplicity of worlds. In this logical framework, the continuum of worlds is treated in analogy to the continuum of time points; both “time” and “world” are considered as mutually independent modes of existence. The theory combines elements of Bohmian mechanics and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  10. Origin of Quantum Mechanical Results and Life: A Clue from Quantum Biology.Biswaranjan Dikshit - 2018 - Neuroquantology 16 (4):26-33.
    Although quantum mechanics can accurately predict the probability distribution of outcomes in an ensemble of identical systems, it cannot predict the result of an individual system. All the local and global hidden variable theories attempting to explain individual behavior have been proved invalid by experiments (violation of Bell’s inequality) and theory. As an alternative, Schrodinger and others have hypothesized existence of free will in every particle which causes randomness in individual results. However, these free will theories have failed (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  11. How Has Quantum Physics Affected the Free Will Debate?Neer Singhal - manuscript
    This paper discusses the extent to which advances in quantum physics can affect ideas of free will and determinism. It questions whether arguments that conclude the existence of free will from quantum physics are as valid as they seem. -/- The paper discusses the validity of Searle’s philosophy of mind, Robert Kane’s parallel processing, and Ted Honderich’s near-determinism, as well as dealing with chaos theory, the relationship between ‘randomness’ and ‘unpredictability,’ and Bell’s theorem, discussing how they can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. The Stochastic-Quantum Theorem.Jacob A. Barandes - manuscript
    This paper introduces several new classes of mathematical structures that have close connections with physics and with the theory of dynamical systems. The most general of these structures, called generalized stochastic systems, collectively encompass many important kinds of stochastic processes, including Markov chains and random dynamical systems. This paper then states and proves a new theorem that establishes a precise correspondence between any generalized stochastic system and a unitarily evolving quantum system. This theorem therefore leads to a new formulation (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  13. Mind and Emergence: From Quantum to Consciousness.Philip Clayton - 2004 - New York: Oxford University Press UK.
    Strong claims have been made for emergence as a new paradigm for understanding science, consciousness, and religion. Tracing the past history and current definitions of the concept, Clayton assesses the case for emergent phenomena in the natural world and their significance for philosophy and theology. Complex emergent phenomena require irreducible levels of explanation in physics, chemistry and biology. This pattern of emergence suggests a new approach to the problem of consciousness, which is neither reducible to brain states nor proof (...)
    Download  
     
    Export citation  
     
    Bookmark   73 citations  
  14. Time's Arrow in a Quantum Universe: On the Status of Statistical Mechanical Probabilities.Eddy Keming Chen - 2020 - In Valia Allori (ed.), Statistical Mechanics and Scientific Explanation: Determinism, Indeterminism and Laws of Nature. World Scientific. pp. 479–515.
    In a quantum universe with a strong arrow of time, it is standard to postulate that the initial wave function started in a particular macrostate---the special low-entropy macrostate selected by the Past Hypothesis. Moreover, there is an additional postulate about statistical mechanical probabilities according to which the initial wave function is a ''typical'' choice in the macrostate. Together, they support a probabilistic version of the Second Law of Thermodynamics: typical initial wave functions will increase in entropy. Hence, there are (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  15. The 'Noncausal Causality' of Quantum Information.Vasil Penchev - 2021 - Philosophy of Science eJournal (Elsevier: SSRN) 14 (45):1-7.
    The paper is concentrated on the special changes of the conception of causality from quantum mechanics to quantum information meaning as a background the revolution implemented by the former to classical physics and science after Max Born’s probabilistic reinterpretation of wave function. Those changes can be enumerated so: (1) quantum information describes the general case of the relation of two wave functions, and particularly, the causal amendment of a single one; (2) it keeps the physical description to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. Privileged-Perspective Realism in the Quantum Multiverse.Nora Berenstain - 2020 - In David Glick, George Darby & Anna Marmodoro (eds.), The Foundation of Reality: Fundamentality, Space, and Time. Oxford University Press.
    Privileged-perspective realism (PPR) is a version of metaphysical realism that takes certain irreducibly perspectival facts to be partly constitutive of reality. PPR asserts that there is a single metaphysically privileged standpoint from which these perspectival facts obtain. This chapter discusses several views that fall under the category of privileged-perspective realism. These include presentism, which is PPR about tensed facts, and non-multiverse interpretations of quantum mechanics, which the chapter argues, constitute PPR about world-indexed facts. Using the framework of the bird (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  17. Biological utilization of quantum nonlocality.Brian D. Josephson & Fotini Pallikari-Viras - 1991 - Foundations of Physics 21 (2):197-207.
    The perception of reality by biosystems is based on different, and in certain respects more effective, principles than those utilized by the more formal procedures of science. As a result, what appears as random pattern to the scientific method can be meaningful pattern to a living organism. The existence of this complementary perception of reality makes possible in principle effective use by organisms of the direct interconnections between spatially separated objects shown to exist in the work of J. S. Bell.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  18. Deterministic and indeterministic morality and duality. Quantum and philosophical approach.Darwin Deivy Zambrano Castellano - manuscript
    Quantum mechanics is a fundamental theory in physics that describes the behavior of subatomic particles and systems at very small scales. Unlike classical theories, quantum mechanics introduces elements of indeterminism in the description of physical phenomena. There are fundamental limits to the precision with which certain physical properties, such as the position and momentum of a particle, can be measured simultaneously. This implies that, even if all the initial conditions of a quantum system are known, its future (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. Properties and dispositions: Some metaphysical remarks on quantum ontology.Mauro Dorato - 2006 - American Institute of Physics (1):139-157.
    After some suggestions about how to clarify the confused metaphysical distinctions between dispositional and non-dispositional or categorical properties, I review some of the main interpretations of QM in order to show that – with the relevant exception of Bohm’s minimalist interpretation – quantum ontology is irreducibly dispositional. Such an irreducible character of dispositions must be explained differently in different interpretations, but the reducibility of the contextual properties in the case of Bohmian mechanics is guaranteed by the fact that (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  20. Inherent Properties and Statistics with Individual Particles in Quantum Mechanics.Matteo Morganti - 2009 - Studies in History and Philosophy of Modern Physics 40 (3):223-231.
    This paper puts forward the hypothesis that the distinctive features of quantum statistics are exclusively determined by the nature of the properties it describes. In particular, all statistically relevant properties of identical quantum particles in many-particle systems are conjectured to be irreducible, ‘inherent’ properties only belonging to the whole system. This allows one to explain quantum statistics without endorsing the ‘Received View’ that particles are non-individuals, or postulating that quantum systems obey peculiar probability distributions, or (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  21. A new look at relational holism in quantum mechanics.Matteo Morganti - 2009 - Philosophy of Science 76 (5):1027--1038.
    Teller argued that violations of Bell’s inequalities are to be explained by interpreting quantum entangled systems according to ‘relational holism’, that is, by postulating that they exhibit irreducible (‘inherent’) relations. Teller also suggested a possible application of this idea to quantum statistics. However, the basic proposal was not explained in detail nor has the additional idea about statistics been articulated in further work. In this article, I reconsider relational holism, amending it and spelling it out as appears (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  22. Systems with Single Degree of Freedom and the Interpretation of Quantum Mechanics.Mehran Shaghaghi - manuscript
    Physical systems can store information and their informational properties are governed by the laws of information. In particular, the amount of information that a physical system can convey is limited by the number of its degrees of freedom and their distinguishable states. Here we explore the properties of the physical systems with absolutely one degree of freedom. The central point in these systems is the tight limitation on their information capacity. Discussing the implications of this limitation we demonstrate that such (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. Does chance hide necessity ? A reevaluation of the debate ‘determinism - indeterminism’ in the light of quantum mechanics and probability theory.Louis Vervoort - 2013 - Dissertation, University of Montreal
    In this text the ancient philosophical question of determinism (“Does every event have a cause ?”) will be re-examined. In the philosophy of science and physics communities the orthodox position states that the physical world is indeterministic: quantum events would have no causes but happen by irreducible chance. Arguably the clearest theorem that leads to this conclusion is Bell’s theorem. The commonly accepted ‘solution’ to the theorem is ‘indeterminism’, in agreement with the Copenhagen interpretation. Here it is recalled (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. The Boy Who Grew a New Brain: Understanding this Miracle from a Neuro-Quantum Perspective.Contzen Pereira & Jumpal Shashi Kiran Reddy - 2018 - Neuroquantology 16 (7):39-48.
    In this paper, we present a case of a boy – Noah Wall, who till today surprises the world of neuroscience with his will to grow his brain and survive. The case presented in this study sets a stepping stone in understanding the advent of the will to make a choice, from a neuro-quantum mechanics interpretation. We propose that besides our internal states of choices (neurogenesis, neuroplasticity, cell differentiation, etc.) we also relate with external states of choices (love, compassion, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. Spontaneous emerging of material by applying the Darwin's evolutionary theory to in quantum realm and its impact on simplifying the dilemmas.Vahid Dabbagh - manuscript
    What is the boundary between the animate and inanimate world? It is obvious that the animate world is under rules of inanimate world. Is the converse true? This paper is aimed at imposing the well-known Darwin's theory of evolution to inanimate world of atomic realm where bizarre behavior of electron challenges our everyday perception of inanimate world. This paper, suggests a weird, peculiar and highly elegant speculation of existing, leads suspicious about validity of the law of conservation of mass, provides (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. The Kochen - Specker theorem in quantum mechanics: a philosophical comment (part 1).Vasil Penchev - 2013 - Philosophical Alternatives 22 (1):67-77.
    Non-commuting quantities and hidden parameters – Wave-corpuscular dualism and hidden parameters – Local or nonlocal hidden parameters – Phase space in quantum mechanics – Weyl, Wigner, and Moyal – Von Neumann’s theorem about the absence of hidden parameters in quantum mechanics and Hermann – Bell’s objection – Quantum-mechanical and mathematical incommeasurability – Kochen – Specker’s idea about their equivalence – The notion of partial algebra – Embeddability of a qubit into a bit – Quantum computer is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. A Survey on Uncertainty Relations and Quantum Measurements: Arguments for Lucrative Parsimony in Approaches of Matters.Dumitru Spiridon - 2021 - Progress in Physics 17 (1):38-70.
    This survey tries to investigate the truths and deficiencies of prevalent philosophy about Uncertainty Relations (UR) and Quantum Measurements (QMS). The respective philosophy, known as being eclipsed by unfinished controversies, is revealed to be grounded on six basic precepts. But one finds that all the respective precepts are discredited by insurmountable deficiencies. So, in regard to UR, the alluded philosophy discloses oneself to be an unjustified mythology. Then UR appear either as short-lived historical conventions or as simple and limited (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Wolpert, Chaitin and Wittgenstein on impossibility, incompleteness, the liar paradox, theism, the limits of computation, a non-quantum mechanical uncertainty principle and the universe as computer—the ultimate theorem in Turing Machine Theory (revised 2019).Michael Starks - 2019 - In Suicidal Utopian Delusions in the 21st Century -- Philosophy, Human Nature and the Collapse of Civilization-- Articles and Reviews 2006-2019 4th Edition Michael Starks. Las Vegas, NV USA: Reality Press. pp. 294-299.
    I have read many recent discussions of the limits of computation and the universe as computer, hoping to find some comments on the amazing work of polymath physicist and decision theorist David Wolpert but have not found a single citation and so I present this very brief summary. Wolpert proved some stunning impossibility or incompleteness theorems (1992 to 2008-see arxiv dot org) on the limits to inference (computation) that are so general they are independent of the device doing the computation, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. On the Embodiment of Space and Time: Triadic logic, quantum indeterminacy and the metaphysics of relativity.Timothy M. Rogers - manuscript
    Triadic (systemical) logic can provide an interpretive paradigm for understanding how quantum indeterminacy is a consequence of the formal nature of light in relativity theory. This interpretive paradigm is coherent and constitutionally open to ethical and theological interests. -/- In this statement: -/- (1) Triadic logic refers to a formal pattern that describes systemic (collaborative) processes involving signs that mediate between interiority (individuation) and exteriority (generalized worldview or Umwelt). It is also called systemical logic or the logic of relatives. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. Indeterminism and Undecidability.Klaas Landsman - forthcoming - In Undecidability, Uncomputability, and Unpredictability. Cham: Springer Nature.
    The aim of this paper is to argue that the (alleged) indeterminism of quantum mechanics, claimed by adherents of the Copenhagen interpretation since Born (1926), can be proved from Chaitin's follow-up to Goedel's (first) incompleteness theorem. In comparison, Bell's (1964) theorem as well as the so-called free will theorem-originally due to Heywood and Redhead (1983)-left two loopholes for deterministic hidden variable theories, namely giving up either locality (more precisely: local contextuality, as in Bohmian mechanics) or free choice (i.e. uncorrelated (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  31. The Wave Function and Particle Ontology.Shan Gao - 2014
    In quantum mechanics, the wave function of a N-body system is a mathematical function defined in a 3N-dimensional configuration space. We argue that wave function realism implies particle ontology when assuming: (1) the wave function of a N-body system describes N physical entities; (2) each triple of the 3N coordinates of a point in configuration space that relates to one physical entity represents a point in ordinary three-dimensional space. Moreover, the motion of particles is random and discontinuous.
    Download  
     
    Export citation  
     
    Bookmark  
  32. You Only Live Twice: A Computer Simulation of the Past Could be Used for Technological Resurrection.Alexey Turchin - manuscript
    Abstract: In the future, it will be possible to create advance simulations of ancestor in computers. Superintelligent AI could make these simulations very similar to the real past by creating a simulation of all of humanity. Such a simulation would use all available data about the past, including internet archives, DNA samples, advanced nanotech-based archeology, human memories, as well as text, photos and videos. This means that currently living people will be recreated in such a simulation, and in some sense, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  33. Operational axioms for diagonalizing states.Giulio Chiribella & Carlo Maria Scandolo - 2015 - EPTCS 195:96-115.
    In quantum theory every state can be diagonalized, i.e. decomposed as a convex combination of perfectly distinguishable pure states. This elementary structure plays an ubiquitous role in quantum mechanics, quantum information theory, and quantum statistical mechanics, where it provides the foundation for the notions of majorization and entropy. A natural question then arises: can we reconstruct these notions from purely operational axioms? We address this question in the framework of general probabilistic theories, presenting a set of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. Back to the Future: Curing Past Sufferings and S-Risks via Indexical Uncertainty.Alexey Turchin - manuscript
    The long unbearable sufferings in the past and agonies experienced in some future timelines in which a malevolent AI could torture people for some idiosyncratic reasons (s-risks) is a significant moral problem. Such events either already happened or will happen in causally disconnected regions of the multiverse and thus it seems unlikely that we can do anything about it. However, at least one pure theoretic way to cure past sufferings exists. If we assume that there is no stable substrate of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. The Mereological Problem of Entanglement.Paul M. Näger - manuscript
    It is well-known that the entangled quantum state of a composite object cannot be reduced to the states of its parts. This quantum holism provides a peculiar challenge to formulate an appropriate mereological model: When a system is in an entangled state, which objects are there on the micro and macro level, and which of the objects carries which properties? This paper chooses a modeling approach to answer these questions: It proceeds from a systematic overview of consistent mereological (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  36. Plural metaphysical supervaluationism.Robert Michels, Cristian Mariani & Giuliano Torrengo - 2021 - Inquiry: An Interdisciplinary Journal of Philosophy.
    It has been argued that quantum mechanics forces us to accept the existence of metaphysical, mind-independent indeterminacy. In this paper we provide an interpretation of the indeterminacy involved in the quantum phenomena in terms of a view that we call Plural Metaphysical Supervaluationism. According to it, quantum indeterminacy is captured in terms of an irreducibly plural relation between the actual world and various misrepresentations of it.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  37. Meaning of the wave function.Shan Gao - 2010
    We investigate the meaning of the wave function by analyzing the mass and charge density distributions of a quantum system. According to protective measurement, a charged quantum system has effective mass and charge density distributing in space, proportional to the square of the absolute value of its wave function. In a realistic interpretation, the wave function of a quantum system can be taken as a description of either a physical field or the ergodic motion of a particle. (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  38. Cosmovisions and Realities - the each one's philosophy (3rd edition).Roberto Thomas Arruda (ed.) - 2023 - S.Paulo: Terra à Vista - ISBN 9798376963418.
    It is not by thinking that we create worlds. It is by understanding the world that we learn to think. Cosmovision is a term that should mean a set of foundations from which emerges a systemic understanding of the Universe, its components as life, the world we live in, nature, human phenomena, and their relationships. It is, therefore, a field of analytical philosophy fed by the sciences, whose objective is this aggregated and epistemologically sustainable knowledge about everything that we are (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. Derivation of the Meaning of the Wave Function.Shan Gao - 2011
    We show that the physical meaning of the wave function can be derived based on the established parts of quantum mechanics. It turns out that the wave function represents the state of random discontinuous motion of particles, and its modulus square determines the probability density of the particles appearing in certain positions in space.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  40. 宇宙愿景与现实: 每个人的个人哲学 (3rd edition).Roberto Thomas Arruda - 2023 - São Paulo: Terra à Vista.
    宇宙观是一个词汇,应该意味着一组基础,从中产生对 宇宙的系统性理解,包括生命、我们所处的世界、自然 界、人类现象及其相互关系。因此,这是一种由科学支 持的分析哲学领域,其目标是对我们周围及与我们相关 的所有事物的综合而认识,并在认识上具有认识论的支 持。它是与人类思维一样古老的存在,并且除了运用科 学宇宙学的元素外,还涵盖了所有涉及宇宙和生命的哲 学和科学。 一个宇宙观并不是一组想法、假设和假定,而是一个基 于观察、分析、证据和论证的系统。没有一个宇宙观会 试图定义、确立或提出,而只是理解、分析和解释。每 个人在一生中构建和承载着自己的宇宙观,作为我们思 维和行为的背景。 从语言学角度来看,术语“宇宙观”来源于德语,相当 于多位哲学家所使用的“Weltanschauung”概念。然 而,这种语言上的关系并不适用,因为它与我们所提出 的宇宙观相悖。这个德语词指的是一种先前逻辑或原始 实验性的现实观,具有直觉性的背景,并且在其形成时 6 还不存在批判性的认识。毫无疑问,在我们理解的意义 上,宇宙观包含并使用了这些原始实验性或先前逻辑的 元素,包括历史、集体无意识和我们所承载的所有原型。 然而,在我们应用的概念中,宇宙观远远超越了这些内 容,首先是因为它不断地将其置于当前的批判性思维之 下,并最终使经验成为其真实的宇宙,而非仅仅是思维 或直觉。 安东尼奥·洛佩斯展示了这一内容的广度:1 “宇宙观并不是思维的产物。它并非源于简单 的求知欲望。对现实的理解是宇宙观形成的重 要时刻,但仅仅是其中之一。它源自生活的行 为,源自对生命的经验,源自我们心灵的整体 结构。将生命提升到意识中,在对现实的认识、 对生命的价值以及意志的现实性中,是人类在 生活观念的发展中所做的缓慢而艰难的工作。 (W. Dilthey, 1992 [1911]: 120)”。 -/- 在这项工作中,我们试图勾勒出一种基于当今科学所提 供的现实的宇宙观。我们在任何时候都不会试图进行科 学研究,或对哲学进行理论化,而始终努力在它们的支 持下,或至少在它们的保护下,免受我们通常所带有的 认知扭曲的影响。 .
    Download  
     
    Export citation  
     
    Bookmark  
  41. Protective Measurement and the Meaning of the Wave Function.Shan Gao - 2011
    This article analyzes the implications of protective measurement for the meaning of the wave function. According to protective measurement, a charged quantum system has mass and charge density proportional to the modulus square of its wave function. It is shown that the mass and charge density is not real but effective, formed by the ergodic motion of a localized particle with the total mass and charge of the system. Moreover, it is argued that the ergodic motion is not continuous (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  42.  84
    Cosmovisioni e realtà: la filosofia di ciascuno.Roberto Thomas Arruda - 2024 - São Paulo: Terra à Vista.
    Cosmovisione è un termine che dovrebbe significare un insieme di fondamenti da cui emerge una comprensione sistemica dell'Universo, delle sue componenti come la vita, il mondo in cui viviamo, la natura, il fenomeno umano e le sue relazioni. Si tratta, quindi, di un campo della filosofia analitica alimentato dalle scienze, il cui obiettivo è questa conoscenza aggregata ed epistemologicamente sostenibile su tutto ciò che siamo e conteniamo, che ci circonda e che in qualche modo si relaziona con noi. È qualcosa (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43.  17
    Mga Pananaw sa Kosmos at Realidad: ang pilosopiyang ay bawat isa.Roberto Thomas Arruda - 2024 - São Paulo: Terra à Vista.
    Ang Diyos ay hindi naglalaro ng dado", inulit ni Einstein mula sa taas ng kanyang determinismo, ngunit sa katunayan ang kosmos ay naghahagis ng mga buto nito nang sadyang mapagpasya: ang mga dado nito ay laruin. Hindi sa pag-iisip na tayo ay lumikha ng mga mundo. Sa pamamagitan ng pag-unawa sa mundo natututo tayong mag-isip. Ang Cosmovision ay isang termino na dapat ay nangangahulugang isang hanay ng mga pundasyon kung saan lumalabas ang isang sistematikong pag-unawa sa Uniberso, ang mga bahagi (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. The Problem of Determinism - Freedom as Self-Determination.Dieter Wandschneider - 2010 - Psychotherapie Forum 18:100-107.
    There are arguments for determinism. Admittedly, this is opposed by the fact of everyday experience of autonomy. In the following, it is argued for the compatibility of determinism and autonomy. Taking up considerations of Donald MacKay, a fatalistic attitude can be refuted as false. Repeatedly, attempts have been made to defend the possibility of autonomy with reference to quantum physical indeterminacy. But its statistical randomness clearly misses the meaning of autonomy. What is decisive, on the other hand, is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. The Wave Function and Its Evolution.Shan Gao - 2011
    The meaning of the wave function and its evolution are investigated. First, we argue that the wave function in quantum mechanics is a description of random discontinuous motion of particles, and the modulus square of the wave function gives the probability density of the particles being in certain locations in space. Next, we show that the linear non-relativistic evolution of the wave function of an isolated system obeys the free Schrödinger equation due to the requirements of spacetime translation invariance (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Protective measurement and the de Broglie-Bohm theory.Shan Gao - manuscript
    We investigate the implications of protective measurement for de Broglie-Bohm theory, mainly focusing on the interpretation of the wave function. It has been argued that the de Broglie-Bohm theory gives the same predictions as quantum mechanics by means of quantum equilibrium hypothesis. However, this equivalence is based on the premise that the wave function, regarded as a Ψ-field, has no mass and charge density distributions. But this premise turns out to be wrong according to protective measurement; a charged (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. Космовидения и реальности - философия каждого (3rd edition).Roberto Arruda - 2023 - São Paulo: Terra à Vista.
    Космовидение - термин, под которым следует понимать совокупность оснований, из которых возникает системное понимание Вселенной, таких ее составляющих, как жизнь, мир, в котором мы живем, природа, феномен человека, и их взаимосвязей. таким образом, это область аналитической философии, питаемая науками, целью которой является совокупное и эпистемологически устойчивое знание обо всем, чем мы являемся и что в нас содержится, что нас окружает и что так или иначе с нами связано. это старое, как человеческая мысль, понятие, которое не только использует элементы научной космологии, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. A Class of Examples Demonstrating That 'P ≠ NP' in the 'P Vs NP' Problem.Vasil Penchev - 2020 - Computing Methodology eJournal (Elsevier: SSRN) 3 (19):1-19.
    The CMI Millennium “P vs NP Problem” can be resolved e.g. if one shows at least one counterexample to the "P = NP" conjecture. A certain class of problems being such counterexamples will be formulated. This implies the rejection of the hypothesis that "P = NP" for any conditions satisfying the formulation of the problem. Thus, the solution "P is different from NP" of the problem in general is proved. The class of counterexamples can be interpreted as any quantum (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. Gauge Invariance for Classical Massless Particles with Spin.Jacob A. Barandes - 2021 - Foundations of Physics 51 (1):1-14.
    Wigner's quantum-mechanical classification of particle-types in terms of irreducible representations of the Poincaré group has a classical analogue, which we extend in this paper. We study the compactness properties of the resulting phase spaces at fixed energy, and show that in order for a classical massless particle to be physically sensible, its phase space must feature a classical-particle counterpart of electromagnetic gauge invariance. By examining the connection between massless and massive particles in the massless limit, we also derive (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  50. Entanglement and thermodynamics in general probabilistic theories.Giulio Chiribella & Carlo Maria Scandolo - 2015 - New Journal of Physics 17:103027.
    Entanglement is one of the most striking features of quantum mechanics, and yet it is not specifically quantum. More specific to quantum mechanics is the connection between entanglement and thermodynamics, which leads to an identification between entropies and measures of pure state entanglement. Here we search for the roots of this connection, investigating the relation between entanglement and thermodynamics in the framework of general probabilistic theories. We first address the question whether an entangled state can be transformed (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
1 — 50 / 1000