What is the proper metaphysics of quantummechanics? In this dissertation, I approach the question from three different but related angles. First, I suggest that the quantum state can be understood intrinsically as relations holding among regions in ordinary space-time, from which we can recover the wave function uniquely up to an equivalence class (by representation and uniqueness theorems). The intrinsic account eliminates certain conventional elements (e.g. overall phase) in the representation of the quantum state. (...) It also dispenses with first-order quantification over mathematical objects, which goes some way towards making the quantum world safe for a nominalistic metaphysics suggested in Field (1980, 2016). Second, I argue that the fundamental space of the quantum world is the low-dimensional physical space and not the high-dimensional space isomorphic to the ``configuration space.'' My arguments are based on considerations about dynamics, empirical adequacy, and symmetries of the quantummechanics. Third, I show that, when we consider quantummechanics in a time-asymmetric universe (with a large entropy gradient), we obtain new theoretical and conceptual possibilities. In such a model, we can use the low-entropy boundary condition known as the Past Hypothesis (Albert, 2000) to pin down a natural initial quantum state of the universe. However, the universal quantum state is not a pure state but a mixed state, represented by a density matrix that is the normalized projection onto the Past Hypothesis subspace. This particular choice has interesting consequences for Humean supervenience, statistical mechanical probabilities, and theoretical unity. (shrink)
I examine the epistemological debate on scientific realism in the context of quantum physics, focusing on the empirical underdetermin- ation of different formulations and interpretations of QM. I will argue that much of the interpretational, metaphysical work on QM tran- scends the kinds of realist commitments that are well-motivated in the light of the history of science. I sketch a way of demarcating empirically well-confirmed aspects of QM from speculative quantummetaphysics in a way that coheres with (...) anti-realist evidence from the history of science. The minimal realist attitude sketched withholds realist com- mitment to what quantum state |Ψ⟩ represents. I argue that such commitment is not required for fulfilling the ultimate realist motiva- tion: accounting for the empirical success of quantummechanics in a way that is in tune with a broader understanding of how theoretical science progresses and latches onto reality. (shrink)
We discuss some methodological aspects of the relation between physics and metaphysics by dealing specifically with the case of non-relativistic quantummechanics. Our main claim is that current attempts to productively integrate quantummechanics and metaphysics are best seen as approaches of what should be called ‘the metaphysics of science’, which is developed by applying already existing metaphysical concepts to scientific theories. We argue that, in this perspective, metaphysics must be understood as (...) an autonomous discipline. It results that this metaphysics cannot hope to derive any kind of justification from science. Thus, one of the main motivations of such project, which is the obtaining of a scientifically respectable justification for the attribution of a single true metaphysical profile to the posits of a scientific theory, is doomed because of the emergence of metaphysical underdetermination from the outset. If metaphysics floats free from physics, which is a premise of such project of integration between these two areas, then it is always possible to attribute more than one metaphysical profile to dress physical entities. (shrink)
Traditionally the role and meaning of the knowing subject has been a salient issue for the Western metaphysics, particularly for the modern one. The notion of the measuring subject, corresponding more or less to the knowing subject in the traditional metaphysical sense, whose measuring act directly interferes in the dynamic state of being of an object, takes up a central place in the philosophical narration of quantummechanics. Nevertheless the possibility for the metaphysical subject and the (...) class='Hi'>quantum mechanical subject to have a certain co-relation has not been thought out in both spheres. This paper addresses and discusses precisely that topic: How is the quantum mechanically playing subject to relate to the metaphysical transcendental subject traditionally set out, specifically to the Kantian subject and the Husserlian subject each? Meanwhile it raises a question as to the so-called ‘progressive’ character of quantummechanics whether the quantum mechanical theory of subject ‘really’ resists the inertia of the Western metaphysical tradition or rather inherits and faithfully upholds it. (shrink)
In this paper, I introduce an intrinsic account of the quantum state. This account contains three desirable features that the standard platonistic account lacks: (1) it does not refer to any abstract mathematical objects such as complex numbers, (2) it is independent of the usual arbitrary conventions in the wave function representation, and (3) it explains why the quantum state has its amplitude and phase degrees of freedom. -/- Consequently, this account extends Hartry Field’s program outlined in Science (...) Without Numbers (1980), responds to David Malament’s long-standing impossibility conjecture (1982), and establishes an important first step towards a genuinely intrinsic and nominalistic account of quantummechanics. I will also compare the present account to Mark Balaguer’s (1996) nominalization of quantummechanics and discuss how it might bear on the debate about “wave function realism.” In closing, I will suggest some possible ways to extend this account to accommodate spinorial degrees of freedom and a variable number of particles (e.g. for particle creation and annihilation). -/- Along the way, I axiomatize the quantum phase structure as what I shall call a “periodic difference structure” and prove a representation theorem as well as a uniqueness theorem. These formal results could prove fruitful for further investigation into the metaphysics of phase and theoretical structure. -/- (For a more recent version of this paper, please see "The Intrinsic Structure of QuantumMechanics" available on PhilPapers.). (shrink)
Some interpretations of quantummechanics use notions of possible states and possible trajectories. We investigate how this modal approach correlates with several metaphysical conceptions of a transition from potential to actual existence. The comparison is based on a discussion in contemporary analytic metaphysics of modality. We also consider an analogy between Leibniz’s theory of the possibilities striving towards existence, wave mechanics of Schrödinger, and Feynman path integral.
Recently we proposed “quantum language" (or,“the linguistic Copenhagen interpretation of quantummechanics"), which was not only characterized as the metaphysical and linguistic turn of quantummechanics but also the linguistic turn of Descartes=Kant epistemology. Namely, quantum language is the scientific final goal of dualistic idealism. It has a great power to describe classical systems as well as quantum systems. Thus, we believe that quantum language is the language in which science is written. (...) The purpose of this preprint is to examine and assert our belief (i.e.,“proposition in quantum language" ⇔“scientific proposition). We believe that it's one of main themes of scientific philosophy to make such language. (shrink)
Traditionally, being a realist about something means believing in the independent existence of that something. In this line of thought, a scientific realist is someone who believes in the objective existence of the entities postulated by our best scientific theories. In metaphysical terms, what does that mean? In ontological terms, i.e., in terms of what exists, scientific realism can be understood as involving the adoption of a scientifically informed ontology. But according to some philosophers, a realistic attitude must go beyond (...) ontology. The way in which this requirement has been understood involves providing a metaphysics for the entities postulated by science, that is, answering questions about the nature of what ontology admits to exist. We discuss how two fashionable approaches face the challenge of providing a metaphysics for science: a form of naturalism and the Viking/Toolbox approach. Finally, we present a third way, which adopts the best of both approaches: the meta-Popperian method, which focuses on discarding the wrong alternatives, or better saying, the metaphysical profiles incompatible with certain theories. We present the meta-Popperian method, a metametaphysical method capable of objectively assessing which metaphysical profiles are incompatible with certain scientific theories. For this, we will use quantummechanics as a case study, presenting some previously obtained results. As our focus is on methodological questions about the relationship between metaphysics and science; with this method, we can see how science can be used to avoid error in metaphysical issues. In our opinion, this would be a way to develop a productive relationship between science and metaphysics. (shrink)
The persistent interpretation problem for quantummechanics may indicate an unwillingness to consider unpalatable assumptions that could open the way toward progress. With this in mind, I focus on the work of David Bohm, whose earlier work has been more influential than that of his later. As I’ll discuss, I believe two assumptions play a strong role in explaining the disparity: 1) that theories in physics must be grounded in mathematical structure and 2) that consciousness must supervene on (...) material processes. I’ll argue that the first assumption appears to lead us toward Everett’s many worlds interpretation, which suggests a red flag. I’ll also argue that the second assumption is suspect due to the persistent explanatory gap for consciousness. Later, I explore ways that Bohm’s later work holds some promise in providing a better fit with our world, both phenomenologically and empirically. Also, I’ll address the possible problem of realism. (shrink)
The four antinomies of Zeno of Elea continue to be provoking issues that remain relevant for the foundation of science. Aristotle used this antinomy to arrive at a deeper understanding of movement : it is a fluent continuum that he considers to be a whole. The parts, if any, are only potentially present. Similarly, quantummechanics states that movement is quantized ; things move or change in nonreducible steps, the so-called quanta. This view is in contrast to classical (...)mechanics, where infinitesimally small steps are permitted. The objective of the present study is to show the merits of the Aristotelian approach. Examples from modern science serve to illustrate the philosophical statements. (shrink)
This paper presents and critically discusses the “logos approach to quantummechanics” from the point of view of the current debates concerning the relation between metaphysics and science. Due to its alleged direct connection with quantum formalism, the logos approach presents itself as a better alternative for understanding quantummechanics than other available views. However, we present metaphysical and methodological difficulties that seem to clearly point to a different conclusion: the logos approach is on (...) an epistemic equal footing among alternative realist approaches to quantummechanics. (shrink)
Metaphysical underdetermination arises when we are not able to decide, through purely theoretical criteria, between competing interpretations of scientific theories with different metaphysical commitments. This is the case in which non-relativistic quantummechanics (QM) finds itself in. Among several available interpretations, there is the one that states that the interaction with the conscious mind of a human observer causes a change in the dynamics of quantum objects undergoing from indefinite to definite states. In this paper, we argue (...) that there seems to be also a metaphysical underdetermination concerning London and Bauer’s theory of measurement between two methods of phenomenological reduction: the eidetic and the transcendental approaches. Recently, Steven French argued that both methods can be combined in order to interpret London and Bauer’s formalism. However, in this paper we argue that the eidetic one is the only viable phenomenological way to interpret this particular theory of measurement in QM based on the formalism presented by London and Bauer, hence breaking this phenomenological underdetermination. (shrink)
This thesis inquires what it means to interpret non-relativistic quantummechanics (QM), and the philosophical limits of this interpretation. In pursuit of a scientific-realist stance, a metametaphysical method is expanded and applied to evaluate rival interpretations of QM, based on the conceptual distinction between ontology and metaphysics, for objective theory choice in metaphysical discussions relating to QM. Three cases are examined, in which this metametaphysical method succeeds in indicating what are the wrong alternatives to interpret QM in (...) metaphysical terms. The first two cases failed in doing so due to different kinds of underdetermination. In the third case, unlike underdetermination, where there are many choices to be made, a “null-determination” is proposed where there may be no metaphysical choices in the available metaphysical literature. Considering what has been discussed, an agnostic philosophic position is adopted concerning the possibility of interpreting QM from a scientific-realistic point of view. (shrink)
The central motivating idea behind the development of this work is the concept of prespace, a hypothetical structure that is postulated by some physicists to underlie the fabric of space or space-time. I consider how such a structure could relate to space and space-time, and the rest of reality as we know it, and the implications of the existence of this structure for quantum theory. Understanding how this structure could relate to space and to the rest of reality requires, (...) I believe, that we consider how space itself relates to reality, and how other so-called "spaces" used in physics relate to reality. In chapter 2, I compare space and space-time to other spaces used in physics, such as configuration space, phase space and Hilbert space. I support what is known as the "property view" of space, opposing both the traditional views of space and space-time, substantivalism and relationism. I argue that all these spaces are property spaces. After examining the relationships of these spaces to causality, I argue that configuration space has, due to its role in quantummechanics, a special status in the microscopic world similar to the status of position space in the macroscopic world. In chapter 3, prespace itself is considered. One way of approaching this structure is through the comparison of the prespace structure with a computational system, in particular to a cellular automaton, in which space or space-time and all other physical quantities are broken down into discrete units. I suggest that one way open for a prespace metaphysics can be found if physics is made fully discrete in this way. I suggest as a heuristic principle that the physical laws of our world are such that the computational cost of implementing those laws on an arbitrary computational system is minimized, adapting a heuristic principle of this type proposed by Feynman. In chapter 4, some of the ideas of the previous chapters are applied in an examination of the physics and metaphysics of quantum theory. I first discuss the "measurement problem" of quantummechanics: this problem and its proposed solution are the primary subjects of chapter 4. It turns out that considering how quantum theory could be made fully discrete leads naturally to a suggestion of how standard linear quantummechanics could be modified to give rise to a solution to the measurement problem. The computational heuristic principle reinforces the same solution. I call the modified quantummechanics Critical Complexity QuantumMechanics (CCQM). I compare CCQM with some of the other proposed solutions to the measurement problem, in particular the spontaneous localization model of Ghirardi, Rimini and Weber. Finally, in chapters 5 and 6, I argue that the measure of complexity of quantum mechanical states I introduce in CCQM also provides a new definition of entropy for quantummechanics, and suggests a solution to the problem of providing an objective foundation for statistical mechanics, thermodynamics, and the arrow of time. (shrink)
The quantum information introduced by quantummechanics is equivalent to that generalization of the classical information from finite to infinite series or collections. The quantity of information is the quantity of choices measured in the units of elementary choice. The qubit can be interpreted as that generalization of bit, which is a choice among a continuum of alternatives. The axiom of choice is necessary for quantum information. The coherent state is transformed into a well-ordered series of (...) results in time after measurement. The quantity of quantum information is the ordinal corresponding to the infinity series in question. Number and being (by the meditation of time), the natural and artificial turn out to be not more than different hypostases of a single common essence. This implies some kind of neo-Pythagorean ontology making related mathematics, physics, and technics immediately, by an explicit mathematical structure. (shrink)
The paper takes up Bell's “Everett theory” and develops it further. The resulting theory is about the system of all particles in the universe, each located in ordinary, 3-dimensional space. This many-particle system as a whole performs random jumps through 3N-dimensional configuration space – hence “Tychistic Bohmian Mechanics”. The distribution of its spontaneous localisations in configuration space is given by the Born Rule probability measure for the universal wavefunction. Contra Bell, the theory is argued to satisfy the minimal desiderata (...) for a Bohmian theory within the Primitive Ontology framework. TBM's formalism is that of ordinary Bohmian Mechanics, without the postulate of continuous particle trajectories and their deterministic dynamics. This “rump formalism” receives, however, a different interpretation. We defend TBM as an empirically adequate and coherent quantum theory. Objections voiced by Bell and Maudlin are rebutted. The “for all practical purposes”-classical, Everettian worlds exist sequentially in TBM. In a temporally coarse-grained sense, they quasi-persist. By contrast, the individual particles themselves cease to persist. (shrink)
In this paper, we evaluate some proposals that can be advanced to clarify the ontological consequences of Relational QuantumMechanics. We first focus on priority monism and ontic structural realism and argue that these views are not suitable for providing an ontological interpretation of the theory. Then, we discuss an alternative interpretation that we regard as more promising, based on so-called ‘metaphysical coherentism’, which we also connect to the idea of an event-based, or ‘flash’, ontology.
This paper offers a critical assessment of the current state of the debate about the identity and individuality of material objects. Its main aim, in particular, is to show that, in a sense to be carefully specified, the opposition between the Leibnizian ‘reductionist’ tradition, based on discernibility, and the sort of ‘primitivism’ that denies that facts of identity and individuality must be analysable has become outdated. In particular, it is argued that—contrary to a widespread consensus—‘naturalised’ metaphysics supports both the (...) acceptability of non-qualitatively grounded (both ‘contextual’ and intrinsic) identity and a pluralistic approach to individuality and individuation. A case study is offered that focuses on non-relativistic quantummechanics, in the context of which primitivism about identity and individuality, rather than being regarded as unscientific, is on the contrary suggested to be preferable to the complicated forms of reductionism that have recently been proposed. More generally, by assuming a plausible form of anti-reductionism about scientific theories and domains, it is claimed that science can be regarded as compatible with, or even as suggesting, the existence of a series of equally plausible grades of individuality. The kind of individuality that prevails in a certain context and at a given level can be ascertained only on the basis of the specific scientific theory at hand. (shrink)
This paper is divided in four parts. In the first part we introduce the method of internal critique of philosophical theories by examination of their external consistency with scientific theories. In the second part two metaphysical and one epistemological postulate of Wittgenstein's Tractatus are made explicit and formally expressed. In the third part we examine whether Tractarian metaphysical and epistemological postulates (the independence of simple states of affairs, the unique mode of their composition, possibility of complete empirical knowledge) are externally (...) consistent with the theory of quantummechanics. The result of the inquiry is negative: Tractarian postulates ought to be be revised. Relying on the result we approach the question of the empirical character of logic in the fourth part. The description of theoretical transformations of the notion of disjunction, in its ontological, epistemological, and logical sense, is a common element of in all parts of the text. The conjecture on the existence of different types of disjunctive connectives in the language of quantummechanics concludes the paper. (shrink)
There is not much of a consensus on almost anything about quantummechanics. I take it, however, that the minimum consensus is that "although quantummechanics is empirically successful, quantummechanics is hard to understand." Quantummechanics, in the way it is presented in most textbooks, does indeed not provide a clear picture of reality that would make it a theory to be understood. In her new book, "The World in the Wave (...) Function: A Metaphysics for Quantum Physics," Alyssa Ney tries to make this blurry picture of reality more precise, even if this picture will turn out to be heterodox and unfamiliar. (shrink)
In this article we have tried basically to lay out an outline of possible overlap between the metaphysical standpoints of the Madhyamik Buddhism with the so called Copenhagen interpretation of quantummechanics. We argued here that , both Madhyamik Buddhism as well as Copenhagen develop some common grounds of skepticism or cautionary notes against the classical intuitive Realist ideology committed to ontological priority of individual . So , though the presiding contexts of Madhyamik Buddhism and quantum (...) class='Hi'>mechanics are admittedly very different , we can still judge the ontological merit/ implications of ‘the cautions’ on comparative grounds .. And we have argued on this basis here about the possibility to sculpt out some norms of justification for starting a meaningful Dialog between Buddhism and modern Physical science. (shrink)
The original conception of atomism suggests “atoms”, which cannot be divided more into composing parts. However, the name “atom” in physics is reserved for entities, which can be divided into electrons, protons, neutrons and other “elementary particles”, some of which are in turn compounded by other, “more elementary” ones. Instead of this, quantummechanics is grounded on the actually indivisible quanta of action limited by the fundamental Planck constant. It resolves the problem of how both discrete and continuous (...) (even smooth) to be described uniformly and invariantly in thus. Quantummechanics can be interpreted in terms of quantum information. Qubit is the indivisible unit (“atom”) of quantum information. The imagery of atomism in modern physics moves from atoms of matter (or energy) via “atoms” (quanta) of action to “atoms” (qubits) of quantum information. This is a conceptual shift in the cognition of reality to terms of information, choice, and time. (shrink)
This is Part 2 of a four part paper, intended as an introduction to the key concepts and issues of time directionality for physicists and philosophers. It redresses some fundamental confusions in the subject. These need to be corrected in introductory courses for physics and philosophy of physics students. Here we analyze the quantum mechanical time reversal operator and the reversal of the deterministic Schrodinger equation. It is argued that quantummechanics is anti-symmetric w.r.t. time reversal in (...) its deterministic laws. This contradicts the orthodox analysis, found throughout the conventional literature on physical time, which claims that quantummechanics is time symmetric (reversible), and that we must adopt the anti-unitary operator (T*) instead of the unitary time reversal operator (T) for time reversal in quantummechanics. This is widely claimed as settled scientific fact, and large metaphysical conclusions about the symmetry of time are drawn from it. But it is an error. (shrink)
The paper compares dispositionalism about laws of nature with primitivism. It argues that while the distinction between these two positions can be drawn in a clear-cut manner in classical mechanics, it is less clear in quantummechanics, due to quantum non-locality. Nonetheless, the paper points out advantages for dispositionalism in comparison to primitivism also in the area of quantummechanics, and of contemporary physics in general.
Distinctions in fundamentality between different levels of description are central to the viability of contemporary decoherence-based Everettian quantummechanics (EQM). This approach to quantum theory characteristically combines a determinate fundamental reality (one universal wave function) with an indeterminate emergent reality (multiple decoherent worlds). In this chapter I explore how the Everettian appeal to fundamentality and emergence can be understood within existing metaphysical frameworks, identify grounding and concept fundamentality as promising theoretical tools, and use them to characterize a (...) system of explanatory levels (with associated laws of nature) for EQM. This Everettian level structure encompasses and extends the ‘classical’ levels structure. The ‘classical’ levels of physics, chemistry, biology, etc. are recovered, but they are emergent in character and potentially variable across Everett worlds. EQM invokes an additional fundamental level, not present in the classical levels picture, and a novel potential role for self-location in interlevel metaphysics. When given a modal realist interpretation, EQM also makes trouble for supervenience-based approaches to levels. (shrink)
We review the spiritual cosmology of the 20th-century Indian mystic and yogi Sri Aurobindo. Our aim is twofold. First to furnish a basic philosophical understanding of Aurobindo’s vision, and secondly, that of making a comparative analysis with present scientific knowledge that could furnish an alternative metaphysical interpretation of the physical world. The rationale of our study is to question whether the observation of the physical world from the standpoint of the mystic experience could suggest some new theoretical framework for the (...) metaphysical ontology of the world itself. Taking perspectives from the states of consciousness described by mystics may furnish us with a deeper understanding of the material and metaphysical character of physical categories such as matter, energy, force, space, time, and space-time. This is an introductory overview of Aurobindo’s relevance for physical sciences and the conceptual foundations of physics, with particular attention paid to quantum physics. (shrink)
‘Shallow’ and ‘deep’ versions of scientific realism may be distinguished as follows: the shallow realist is satisfied with belief in the existence of the posits of our best scientific theories; by contrast, deep realists claim that realism can be legitimate only if such entities are described in metaphysical terms. We argue that this methodological discussion can be fruitfully applied in Everettian quantummechanics, specifically on the debate concerning the existence of worlds and the recent dispute between Everettian actualism (...) and quantum modal realism. After presenting what is involved in such dispute, we point to a dilemma for realists: either we don’t have the available metaphysical tools to answer the deep realist’s demands, and realism is not justified in this case, or such demands of metaphysical dressing are not mandatory for scientific realism, and deep versions of realism are not really required. (shrink)
This paper puts forward the hypothesis that the distinctive features of quantum statistics are exclusively determined by the nature of the properties it describes. In particular, all statistically relevant properties of identical quantum particles in many-particle systems are conjectured to be irreducible, ‘inherent’ properties only belonging to the whole system. This allows one to explain quantum statistics without endorsing the ‘Received View’ that particles are non-individuals, or postulating that quantum systems obey peculiar probability distributions, or assuming (...) that there are primitive restrictions on the range of states accessible to such systems. With this, the need for an unambiguously metaphysical explanation of certain physical facts is acknowledged and satisfied. (shrink)
David Lewis is a natural target for those who believe that findings in quantum physics threaten the tenability of traditional metaphysical reductionism. Such philosophers point to allegedly holistic entities they take both to be the subjects of some claims of quantummechanics and to be incompatible with Lewisian metaphysics. According to one popular argument, the non-separability argument from quantum entanglement, any realist interpretation of quantum theory is straightforwardly inconsistent with the reductive conviction that the (...) complete physical state of the world supervenes on the intrinsic properties of and spatio-temporal relations between its point-sized constituents. Here I defend Lewis's metaphysical doctrine, and traditional reductionism more generally, against this alleged threat from quantum holism. After presenting the non-separability argument from entanglement, I show that Bohmian mechanics, an interpretation of quantummechanics explicitly recognized as a realist one by proponents of the non-separability argument, plausibly rejects a key premise of that argument. Another holistic worry for Humeanism persists, however, the trouble being the apparently holistic character of the Bohmian pilot wave. I present a Humean strategy for addressing the holistic threat from the pilot wave by drawing on resources from the Humean best system account of laws. (shrink)
The paper investigates the type of realism that best suits the framework of decoherence taken at face value without postulating a plurality of worlds, or additional hidden variables, or non-unitary dynamical mechanisms. It is argued that this reading of decoherence leads to an extremely radical type of perspectival realism, especially when cosmological decoherence is considered.
The goal of this essay is twofold. First, it provides a quick look at the foundations of modern relational mechanics by tracing its development from Julian Barbour and Bruno Bertotti's original ideas until present-day's pure shape dynamics. Secondly, it discusses the most appropriate metaphysics for pure shape dynamics, showing that relationalism is more of a nuanced thesis rather than an elusive one. The chapter ends with a brief assessment of the prospects of pure shape dynamics in light of (...)quantum physics. (shrink)
The present paper discusses the problem of quantum-mechanical properties of a subject’s consciousness. The model of generalized economic measurements is used for the analysis. Two types of such measurements are analyzed – transactions and technologies. Algebraic ratios between the technology-type measurements allow making their analogy with slit experiments in physics. It has been shown that the description of results of such measurements is possible both in classical and in quantum formalism of calculation of probabilities. Thus, the quantum-mechanical (...) formalism of the description of states appears as a result of idealization of the selection mechanism in the proprietor's consciousness. (shrink)
Although quantummechanics can accurately predict the probability distribution of outcomes in an ensemble of identical systems, it cannot predict the result of an individual system. All the local and global hidden variable theories attempting to explain individual behavior have been proved invalid by experiments (violation of Bell’s inequality) and theory. As an alternative, Schrodinger and others have hypothesized existence of free will in every particle which causes randomness in individual results. However, these free will theories have failed (...) to quantitatively explain the quantum mechanical results. In this paper, we take the clue from quantum biology to get the explanation of quantum mechanical distribution. Recently it was reported that mutations (which are quantum processes) in DNA of E. coli bacteria instead of being random were biased in a direction such that the chance of survival of the bacteria is increased. Extrapolating it, we assume that all the particles including inanimate fundamental particles have a will and that is biased to satisfy the collective goals of the ensemble. Using this postulate, we mathematically derive the correct spin probability distribution without using quantum mechanical formalism (operators and Born’s rule) and exactly reproduce the quantum mechanical spin correlation in entangled pairs. Using our concept, we also mathematically derive the form of quantum mechanical wave function of free particle which is conventionally a postulate of quantummechanics. Thus, we prove that the origin of quantum mechanical results lies in the will (or consciousness) of the objects biased by the collective goal of ensemble or universe. This biasing by the group on individuals can be called as “coherence” which directly represents the extent of life present in the ensemble. So, we can say that life originates out of establishment of coherence in a group of inanimate particles. (shrink)
The ecological crisis demonstrates the inadequacy of current modes of thought to grasp the nature of reality and to act accordingly. A more sophisticated metaphysical system is necessary. Arran Gare, a prominent Australian philosopher, has produced such a system, which takes into account the post modern sciences of non-linear thermodynamics, quantummechanics, and complexity theory. The present article promotes a cosmology based on Gare's metaphysics. In contrast to modern science, the postmodern account offered here will come to (...) terms with a world governed by indifference, which is the same indifference that Albert Camus describes as "absurd". Camus will be interpreted in light of Gare's metaphysics. (shrink)
The article sets out a primitive ontology of the natural world in terms of primitive stuff—that is, stuff that has as such no physical properties at all—but that is not a bare substratum either, being individuated by metrical relations. We focus on quantum physics and employ identity-based Bohmian mechanics to illustrate this view, but point out that it applies all over physics. Properties then enter into the picture exclusively through the role that they play for the dynamics of (...) the primitive stuff. We show that such properties can be local, as well as holistic, and discuss two metaphysical options to conceive them, namely, Humeanism and modal realism in the guise of dispositionalism. 1 Introduction2 Primitive Ontology: Primitive Stuff3 The Physics of Matter as Primitive Stuff4 The Humean Best System Analysis of the Dynamical Variables5 Modal Realism about the Dynamical Variables6 Conclusion. (shrink)
THE PRINCIPLE OF SUPERPOSITION. The need for a quantum theory Classical mechanics has been developed continuously from the time of Newton and applied to an ...
The underlying physical reality is a central notion in the interpretations of quantummechanics. The a priori physical reality notion affects the corresponding interpretation. This paper explore the possibility to establish a relationship between philosophical concept of physical reality in Nagarjuna's epistemology (emptiness) and the picture of underlying physical reality in Einstein, Rovelli and Zeilinger positions. This analysis brings us to conclude that the notion of property of a quantum object is untenable. We can only speak about (...) relational property of the object. On this basis, we are stimulated to build a new ontology of underlying physical reality: a relational ontology. Finally, we argue that Nagarjuna's view is comparable with Rovelli's interpretation of quantummechanics. These views eliminate the privileged role of the observer. (shrink)
The mathematical structure of realist quantum theories has given rise to a debate about how our ordinary 3-dimensional space is related to the 3N-dimensional configuration space on which the wave function is defined. Which of the two spaces is our (more) fundamental physical space? I review the debate between 3N-Fundamentalists and 3D-Fundamentalists and evaluate it based on three criteria. I argue that when we consider which view leads to a deeper understanding of the physical world, especially given the deeper (...) topological explanation from the unordered configurations to the Symmetrization Postulate, we have strong reasons in favor of 3D-Fundamentalism. I conclude that our evidence favors the view that our fundamental physical space in a quantum world is 3-dimensional rather than 3N-dimensional. I outline lines of future research where the evidential balance can be restored or reversed. Finally, I draw lessons from this case study to the debate about theoretical equivalence. (shrink)
This chapter argues that quantum indeterminacy can be construed as a merely derivative phenomenon. The possibility of merely derivative quantum indeterminacy undermines both a recent argument against quantum indeterminacy due to David Glick, and an argument against the possibility of merely derivative indeterminacy due to Elizabeth Barnes.
With the advent of quantummechanics in the early 20th century, a great revolution took place in science. The philosophical foundations of classical physics collapsed, and controversial conceptual issues arose: can the quantum mechanical description of physical reality be considered complete? Are the objects of nature inseparable? Do objects not have a specific location before measurement, and are there non-causal quantum jumps? As time passed, not only did the controversies not diminish, but with the decline of (...) positivism, they got more attention. This book, written in Persian, attempts to explain these issues and controversies and their philosophical foundations as simply and critically as possible for those students interested in the philosophical foundations of quantummechanics. (shrink)
Quantummechanics makes some very significant observations about nature. Unfortunately, these observations remain a mystery because they do not fit into and/or cannot be explained through classical mechanics. However, we can still explore the philosophical and practical implications of these observations. This article aims to explain philosophical and practical implications of one of the most important observations of quantummechanics – uncertainty or the arbitrariness in the behavior of particles.
Scientific realism is the view that our best scientific theories can be regarded as (approximately) true. This is connected with the view that science, physics in particular, and metaphysics could (and should) inform one another: on the one hand, science tells us what the world is like, and on the other hand, metaphysical principles allow us to select between the various possible theories which are underdetermined by the data. Nonetheless, quantummechanics has always been regarded as, at (...) best, puzzling, if not contradictory. As such, it has been considered for a long time at odds with scientific realism, and thus a naturalized quantummetaphysics was deemed impossible. Luckily, now we have many quantum theories compatible with a realist interpretation. However, scientific realists assumed that the wave-function, regarded as the principal ingredient of quantum theories, had to represent a physical entity, and because of this they struggled with quantum superpositions. In this paper I discuss a particular approach which makes quantummechanics compatible with scientific realism without doing that. In this approach, the wave-function does not represent matter which is instead represented by some spatio-temporal entity dubbed the primitive ontology: point-particles, continuous matter fields, space-time events. I argue how within this framework one develops a distinctive theory-construction schema, which allows to perform a more informed theory evaluation by analyzing the various ingredients of the approach and their inter-relations. (shrink)
The consistent histories reformulation of quantummechanics was developed by Robert Griffiths, given a formal logical systematization by Roland Omn\`{e}s, and under the label `decoherent histories', was independently developed by Murray Gell-Mann and James Hartle and extended to quantum cosmology. Criticisms of CH involve issues of meaning, truth, objectivity, and coherence, a mixture of philosophy and physics. We will briefly consider the original formulation of CH and some basic objections. The reply to these objections, like the objections (...) themselves, involves a mixture of physics and philosophy. These replies support an evaluation of the CH formulation as a replacement for the measurement, or orthodox, interpretation. (shrink)
We present an axiomatization of non-relativistic QuantumMechanics for a system with an arbitrary number of components. The interpretation of our system of axioms is realistic and objective. The EPR paradox and its relation with realism is discussed in this framework. It is shown that there is no contradiction between realism and recent experimental results.
Recently we proposed “quantum language”which was characterized as the metaphysical and linguistic turn of quantummechanics. This turn from physics to language does not only realize the remarkable extension of quantummechanics but also yield the quantum mechanical world view. And thus, the turn urges us to dream that Western philosophies (i.e., Parmenides, Plato, Descartes, John Locke, Berkeley, Hume, Kant, Wittgenstein, etc.) can be understood in quantum language. In this paper, from the (...) class='Hi'>quantum linguistic point of view, we give the answers of the following two problems. (i): Has western philosophy made progress? Or what is the measure of "progress"? (ii):Why has useless western philosophy been prospering? (shrink)
Many researchers determine the question “Why anything rather than nothing?” as the most ancient and fundamental philosophical problem. Furthermore, it is very close to the idea of Creation shared by religion, science, and philosophy, e.g. as the “Big Bang”, the doctrine of “first cause” or “causa sui”, the Creation in six days in the Bible, etc. Thus, the solution of quantummechanics, being scientific in fact, can be interpreted also philosophically, and even religiously. However, only the philosophical interpretation (...) is the topic of the text. The essence of the answer of quantummechanics is: 1. The creation is necessary in a rigorous mathematical sense. Thus, it does not need any choice, free will, subject, God, etc. to appear. The world exists in virtue of mathematical necessity, e.g. as any mathematical truth such as 2+2=4. 2. The being is less than nothing rather than more than nothing. So, the creation is not an increase of nothing, but the decrease of nothing: it is a deficiency in relation of nothing. Time and its “arrow” are the way of that diminishing or incompleteness to nothing. (shrink)
Indeterminism of quantummechanics is considered as an immediate corollary from the theorems about absence of hidden variables in it, and first of all, the Kochen – Specker theorem. The base postulate of quantummechanics formulated by Niels Bohr that it studies the system of an investigated microscopic quantum entity and the macroscopic apparatus described by the smooth equations of classical mechanics by the readings of the latter implies as a necessary condition of (...) class='Hi'>quantummechanics the absence of hidden variables, and thus, quantum indeterminism. Consequently, the objectivity of quantummechanics and even its possibility and ability to study its objects as they are by themselves imply quantum indeterminism. The so-called free-will theorems in quantummechanics elucidate that the “valuable commodity” of free will is not a privilege of the experimenters and human beings, but it is shared by anything in the physical universe once the experimenter is granted to possess free will. The analogical idea, that e.g. an electron might possess free will to “decide” what to do, scandalized Einstein forced him to exclaim (in a letter to Max Born in 2016) that he would be а shoemaker or croupier rather than a physicist if this was true. Anyway, many experiments confirmed the absence of hidden variables and thus quantum indeterminism in virtue of the objectivity and completeness of quantummechanics. Once quantummechanics is complete and thus an objective science, one can ask what this would mean in relation to classical physics and its objectivity. In fact, it divides disjunctively what possesses free will from what does not. Properly, all physical objects belong to the latter area according to it, and their “behavior” is necessary and deterministic. All possible decisions, on the contrary, are concentrated in the experimenters (or human beings at all), i.e. in the former domain not intersecting the latter. One may say that the cost of the determinism and unambiguous laws of classical physics, is the indeterminism and free will of the experimenters and researchers (human beings) therefore necessarily being out of the scope and objectivity of classical physics. This is meant as the “deterministic subjectivity of classical physics” opposed to the “indeterminist objectivity of quantummechanics”. (shrink)
Privileged-perspective realism (PPR) is a version of metaphysical realism that takes certain irreducibly perspectival facts to be partly constitutive of reality. PPR asserts that there is a single metaphysically privileged standpoint from which these perspectival facts obtain. This chapter discusses several views that fall under the category of privileged-perspective realism. These include presentism, which is PPR about tensed facts, and non-multiverse interpretations of quantummechanics, which the chapter argues, constitute PPR about world-indexed facts. Using the framework of the (...) bird perspective and the frog perspective, it argues that PPR views methodologically treat the frog perspective as metaphysically primary. This chapter considers case studies of metaphysical interpretations of special relativity and quantummechanics in order to demonstrate that such motivations for PPR are non-naturalistic. Further, it considers psychological factors that motivate the appeal of PPR views and offers naturalistic explanations of why we should not expect them to produce an adequate metaphysics of science. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.