Results for 'process biology'

936 found
Order:
  1. Life Processes as Proto-Narratives: Integrating Theoretical Biology and Biosemiotics through Biohermeneutics.Arran Gare - 2022 - Cosmos and History : The Journal of Natural and Social Philosophy 18 (1):210-251.
    The theoretical biology movement originating in Britain in the early 1930’s and the biosemiotics movement which took off in Europe in the 1980’s have much in common. They are both committed to replacing the neo-Darwinian synthesis, and they have both invoked theories of signs to this end. Yet, while there has been some mutual appreciation and influence, particularly in the cases of Howard Pattee, René Thom, Kalevi Kull, Anton Markoš and Stuart Kauffman, for the most part, these movements have (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. Process Ontology in the Context of John Dupré's Philosophy of Biology.Okan Nurettin Okur - 2023 - Metazihin 6 (2):97-118.
    Substantialism, which is an extremely common paradigm in Western philosophy, has dominated the sciences over time. Arguing that the authentic structure of existence is fixed and unchangeable; over time, with the development of modern physics, this understanding, which was easily adopted due to the precision of mechanical and mathematical explanations and the ease of categorization, created a school of biology that tried to develop through quantitative propositions; thus, living things were considered static entities that could be understood through reverse (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. Principles of Information Processing and Natural Learning in Biological Systems.Predrag Slijepcevic - 2021 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 52 (2):227-245.
    The key assumption behind evolutionary epistemology is that animals are active learners or ‘knowers’. In the present study, I updated the concept of natural learning, developed by Henry Plotkin and John Odling-Smee, by expanding it from the animal-only territory to the biosphere-as-a-whole territory. In the new interpretation of natural learning the concept of biological information, guided by Peter Corning’s concept of “control information”, becomes the ‘glue’ holding the organism–environment interactions together. The control information guides biological systems, from bacteria to ecosystems, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  4. Objects and processes: two notions for understanding biological information.Agustín Mercado-Reyes, Pablo Padilla Longoria & Alfonso Arroyo-Santos - forthcoming - Journal of Theoretical Biology.
    In spite of being ubiquitous in life sciences, the concept of information is harshly criticized. Uses of the concept other than those derived from Shannon's theory are denounced as pernicious metaphors. We perform a computational experiment to explore whether Shannon's information is adequate to describe the uses of said concept in commonplace scientific practice. Our results show that semantic sequences do not have unique complexity values different from the value of meaningless sequences. This result suggests that quantitative theoretical frameworks do (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  5. Life in the Interstices: Systems Biology and Process Thought.Joseph E. Earley - 2014 - In Spyridon A. Koutroufinis (ed.), Life and Process: Towards a New Biophilosophy. Boston: De Gruyter. pp. 157-170.
    When a group of processes achieves such closure that a set of states of affairs recurs continually, then the effect of that coherence on the world differs from what would occur in the absence of that closure. Such altered effectiveness is an attribute of the system as a whole, and would have consequences. This indicates that the network of processes, as a unit, has ontological significance. Whenever a network of processes generates continual return to a limited set of states of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  6. Using blinking fractals for mathematical modelling of processes of growth in biological systems.Yaroslav Sergeyev - 2011 - Informatica 22 (4):559–576.
    Many biological processes and objects can be described by fractals. The paper uses a new type of objects – blinking fractals – that are not covered by traditional theories considering dynamics of self-similarity processes. It is shown that both traditional and blinking fractals can be successfully studied by a recent approach allowing one to work numerically with infinite and infinitesimal numbers. It is shown that blinking fractals can be applied for modeling complex processes of growth of biological systems including their (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  7. Biological Emergence: a Key Exemplar of the Open Systems View.George F. R. Ellis - forthcoming - In Michael E. Cuffaro & Stephan Hartmann (eds.), Open Systems: Physics, Metaphysics, and Methodology (2025: Oxford University Press). Oxford: Oxford University Press.
    The context for biological emergence is modular hierarchical structures; their existence is what enables functional complexity to arise. Because of the openness of organisms to their environment, complete initial data (position, momentum) of all particles making up their structure is insufficient to determine future outcomes, because unpredictable new matter, energy, and information impacts each organism from the exterior. Consequently, through Darwinian evolution, life has developed processes to handle this issue functionally on short time scales as well on longer developmental timescales. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8.  46
    Biology as a Construct: Universals, Historicity, and the Postmodern Critique.Hippokratis Kiaris - 2024 - Perspectives in Biology and Medicine 67 (3):337-347.
    The integration of postmodern thinking in the sciences, especially in biology, has been subject to harsh criticism. Contrary to Enlightenment ideals of objectivity and neutrality in the scientific method, the postmodern stance holds that truth is relative, not universal, and therefore progress is ambiguous. The effect of postmodern thought has ramifications that extend from the distrust of preexisting scientific conclusions to questions about the impact of progress in society. It also reflects skepticism about the scientific endeavor. Especially when postmodern (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. From Biological Synapses to "Intelligent" Robots.Birgitta Dresp-Langley - 2022 - Electronics 11:1-28.
    This selective review explores biologically inspired learning as a model for intelligent robot control and sensing technology on the basis of specific examples. Hebbian synaptic learning is discussed as a functionally relevant model for machine learning and intelligence, as explained on the basis of examples from the highly plastic biological neural networks of invertebrates and vertebrates. Its potential for adaptive learning and control without supervision, the generation of functional complexity, and control architectures based on self-organization is brought forward. Learning without (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  10. The Multiple Realizability of Biological Individuals.Ellen Clarke - 2013 - Journal of Philosophy 110 (8):413-435.
    Biological theory demands a clear organism concept, but at present biologists cannot agree on one. They know that counting particular units, and not counting others, allows them to generate explanatory and predictive descriptions of evolutionary processes. Yet they lack a unified theory telling them which units to count. In this paper, I offer a novel account of biological individuality, which reconciles conflicting definitions of ‘organism’ by interpreting them as describing alternative realisers of a common functional role, and then defines individual (...)
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  11. A Manifesto for a Processual Philosophy of Biology.John A. Dupre & Daniel J. Nicholson - 2018 - In Daniel J. Nicholson & John Dupré (eds.), Everything Flows: Towards a Processual Philosophy of Biology. Oxford, United Kingdom: Oxford University Press.
    This chapter argues that scientific and philosophical progress in our understanding of the living world requires that we abandon a metaphysics of things in favour of one centred on processes. We identify three main empirical motivations for adopting a process ontology in biology: metabolic turnover, life cycles, and ecological interdependence. We show how taking a processual stance in the philosophy of biology enables us to ground existing critiques of essentialism, reductionism, and mechanicism, all of which have traditionally (...)
    Download  
     
    Export citation  
     
    Bookmark   54 citations  
  12. Biological Autonomy.Attila Grandpierre & Menas Kafatos - 2012 - Philosophy Study 2 (9):631-649.
    We argue that genuine biological autonomy, or described at human level as free will, requires taking into account quantum vacuum processes in the context of biological teleology. One faces at least three basic problems of genuine biological autonomy: (1) if biological autonomy is not physical, where does it come from? (2) Is there a room for biological causes? And (3) how to obtain a workable model of biological teleology? It is shown here that the solution of all these three problems (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  13.  97
    Demystifying Downward Causation in Biology.Yasmin Haddad - forthcoming - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie.
    The concept of downward causation is frequently used in an explanatory capacity in biology to account for certain regularities and processes. Some philosophers, however, argue that downward causation is metaphysically incoherent, providing three main objections. Underlying these objections is the assumption that entities are connected by compositional hierarchies of levels of organization. In this paper, I introduce the notions of weak and strong compositional relations using examples from evolutionary developmental biology. I argue that downward causation becomes unproblematic if (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. Developmental Systems Theory as a Process Theory.Paul Edmund Griffiths & Karola Stotz - 2018 - In Daniel J. Nicholson & John Dupré (eds.), Everything Flows: Towards a Processual Philosophy of Biology. Oxford, United Kingdom: Oxford University Press. pp. 225-245.
    Griffiths and Russell D. Gray (1994, 1997, 2001) have argued that the fundamental unit of analysis in developmental systems theory should be a process – the life cycle – and not a set of developmental resources and interactions between those resources. The key concepts of developmental systems theory, epigenesis and developmental dynamics, both also suggest a process view of the units of development. This chapter explores in more depth the features of developmental systems theory that favour treating processes (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  15. Complexity Biology-based Information Structures can explain Subjectivity, Objective Reduction of Wave Packets, and Non-Computability.Alex Hankey - 2014 - Cosmos and History 10 (1):237-250.
    Background: how mind functions is subject to continuing scientific discussion. A simplistic approach says that, since no convincing way has been found to model subjective experience, mind cannot exist. A second holds that, since mind cannot be described by classical physics, it must be described by quantum physics. Another perspective concerns mind's hypothesized ability to interact with the world of quanta: it should be responsible for reduction of quantum wave packets; physics producing 'Objective Reduction' is postulated to form the basis (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  16. Everything Flows: Towards a Processual Philosophy of Biology.Daniel J. Nicholson & John Dupré (eds.) - 2018 - Oxford, United Kingdom: Oxford University Press.
    This collection of essays explores the metaphysical thesis that the living world is not made up of substantial particles or things, as has often been assumed, but is rather constituted by processes. The biological domain is organised as an interdependent hierarchy of processes, which are stabilised and actively maintained at different timescales. Even entities that intuitively appear to be paradigms of things, such as organisms, are actually better understood as processes. Unlike previous attempts to articulate processual views of biology, (...)
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  17. Biological roots of musical epistemology: Functional cycles, Umwelt, and enactive listening.Mark Reybrouck - 2001 - Semiotica 2001 (134):599-633.
    This article argues for an epistemology of music, stating that dealing with music can be considered as a process of knowledge acquisition. What really matters is not the representation of an ontological musical reality, but the generation of music knowledge as a tool for adaptation to the sonic world. Three major positions are brought together: the epistemological claims of Jean Piaget, the biological methodology of Jakob von Uexküll, and the constructivistic conceptions of Ernst von Glasersfeld, each ingstress the role (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  18.  84
    Origins of Biological Teleology: How Constraints Represent Ends.Miguel García-Valdecasas & Terrence W. Deacon - 2024 - Synthese 204 (75):1-28.
    To naturalize the concept of teleological causality in biology it is not enough to avoid assuming backward causation or positing the existence of an inscrutable te- leological essence like the élan vital. We must also specify how the causality of or- ganisms is distinct from the causality of designed artifacts like thermostats or asym- metrically oriented processes like the ubiquitous increase of entropy. Historically, the concept of teleological causality in biology has been based on an analogy to the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. Why Biology is Beyond Physical Sciences?Bhakti Niskama Shanta & Bhakti Vijnana Muni - 2016 - Advances in Life Sciences 6 (1):13-30.
    In the framework of materialism, the major attention is to find general organizational laws stimulated by physical sciences, ignoring the uniqueness of Life. The main goal of materialism is to reduce consciousness to natural processes, which in turn can be translated into the language of math, physics and chemistry. Following this approach, scientists have made several attempts to deny the living organism of its veracity as an immortal soul, in favor of genes, molecules, atoms and so on. However, advancement in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. (1 other version)Classifying Processes: An Essay in Applied Ontology.Barry Smith - 2012 - Ratio 25 (4):463-488.
    We begin by describing recent developments in the burgeoning discipline of applied ontology, focusing especially on the ways ontologies are providing a means for the consistent representation of scientific data. We then introduce Basic Formal Ontology (BFO), a top-level ontology that is serving as domain-neutral framework for the development of lower level ontologies in many specialist disciplines, above all in biology and medicine. BFO is a bicategorial ontology, embracing both three-dimensionalist (continuant) and four-dimensionalist (occurrent) perspectives within a single framework. (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  21. Holistic biology: Back on stage? Comments on post-genomics in historical perspective.Alfred Gierer - 2002 - Philosophia Naturalis 39 (1):25-44.
    A strong motivation for the human genome project was to relate biological features to the structure and function of small sets of genes, and ideally to individual genes. However, it is now increasingly realized that many problems require a "systems" approach emphasizing the interplay of large numbers of genes, and the involvement of complex networks of gene regulation. This implies a new emphasis on integrative, systems theoretical approaches. It may be called 'holistic' if the term is used without irrational overtones, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  22. Pathways to pluralism about biological individuality.Beckett Sterner - 2015 - Biology and Philosophy 30 (5):609-628.
    What are the prospects for a monistic view of biological individuality given the multiple epistemic roles the concept must satisfy? In this paper, I examine the epistemic adequacy of two recent accounts based on the capacity to undergo natural selection. One is from Ellen Clarke, and the other is by Peter Godfrey-Smith. Clarke’s position reflects a strong monism, in that she aims to characterize individuality in purely functional terms and refrains from privileging any specific material properties as important in their (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  23. Unification by Fiat: Arrested Development of Predictive Processing.Piotr Litwin & Marcin Miłkowski - 2020 - Cognitive Science 44 (7):e12867.
    Predictive processing (PP) has been repeatedly presented as a unificatory account of perception, action, and cognition. In this paper, we argue that this is premature: As a unifying theory, PP fails to deliver general, simple, homogeneous, and systematic explanations. By examining its current trajectory of development, we conclude that PP remains only loosely connected both to its computational framework and to its hypothetical biological underpinnings, which makes its fundamentals unclear. Instead of offering explanations that refer to the same set of (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  24. Biological explanations, realism, ontology, and categories.Matthew J. Barker - 2013 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 44 (4):617-622.
    This is an extended review of John Dupré's _Processes of Life_, a collection of essays. It clarifies Dupré's concepts of reductionism and anti-reductionism, and critically examines his associated discussions of downward causation, and both the context sensitivity and multiple realization of categories. It reviews his naturalistic monism, and critically distinguishes between his realism about categories and constructivism about classification. Challenges to his process ontology are presented, as are arguments for his pluralism about scientific categories. None of his main conclusions (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  25. Genuine Biological Autonomy: How can the Spooky Finger of Mind play on the Physical Keyboard of the Brain?Grandpierre Attila - 2012 - In Dr Gregory T. Papanikos (ed.), ATINER CONFERENCE PAPER SERIES No: PHI2012-0197.
    Although biological autonomy is widely discussed, its description in scientific terms remains elusive. I present here a series of recent evidences on the existence of genuine biological autonomy. Nevertheless, nowadays it seems that the only acceptable ground to account for any natural phenomena, including biological autonomy, is physics. But if this were the case, then arguably there would be no way to account for genuine biological autonomy. The way out of such a situation is to build up an exact theoretical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. Code biology and the problem of emergence.Arran Gare - 2021 - Biosystems 208.
    It should now be recognized that codes are central to life and to understanding its more complex forms, including human culture. Recognizing the ‘conventional’ nature of codes provides solid grounds for rejecting efforts to reduce life to biochemistry and justifies according a place to semantics in life. The question I want to consider is whether this is enough. Focussing on Eigen’s paradox of how a complex code could originate, I will argue that along with Barbieri’s efforts to account for the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  27. Robust processes and teleological language.Jonathan Birch - 2012 - European Journal for Philosophy of Science 2 (3):299-312.
    I consider some hitherto unexplored examples of teleological language in the sciences. In explicating these examples, I aim to show (a) that such language is not the sole preserve of the biological sciences, and (b) that not all such talk is reducible to the ascription of functions. In chemistry and biochemistry, scientists explaining molecular rearrangements and protein folding talk informally of molecules rearranging “in order to” maximize stability. Evolutionary biologists, meanwhile, often speak of traits evolving “in order to” optimize some (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  28. From physics to biology by extending criticality and symmetry breakings.Giuseppe Longo & Maël Montévil - 2011 - Progress in Biophysics and Molecular Biology 106:340 - 347.
    Symmetries play a major role in physics, in particular since the work by E. Noether and H. Weyl in the first half of last century. Herein, we briefly review their role by recalling how symmetry changes allow to conceptually move from classical to relativistic and quantum physics. We then introduce our ongoing theoretical analysis in biology and show that symmetries play a radically different role in this discipline, when compared to those in current physics. By this comparison, we stress (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  29. Aristotle's Syllogistic Model of Knowledge and the Biological Sciences: Demonstrating Natural Processes.Mariska Leunissen - 2010 - Apeiron 43 (2-3):31-60.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  30. Potentiality in Biology.Andreas Hüttemann & Marie I. Kaiser - 2018 - In Kristina Engelhard & Michael Quante (eds.), Handbook of Potentiality. Dordrecht: Springer. pp. 401-428.
    We take the potentialities that are studied in the biological sciences (e.g., totipotency) to be an important subtype of biological dispositions. The goal of this paper is twofold: first, we want to provide a detailed understanding of what biological dispositions are. We claim that two features are essential for dispositions in biology: the importance of the manifestation process and the diversity of conditions that need to be satisfied for the disposition to be manifest. Second, we demonstrate that the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  31. The Biosemiotic Approach in Biology : Theoretical Bases and Applied Models.Joao Queiroz, Claus Emmeche, Kalevi Kull & Charbel El-Hani - 2011 - In George Terzis & Robert Arp (eds.), Information and Living Systems: Philosophical and Scientific Perspectives. Bradford. pp. 91-130.
    Biosemiotics is a growing fi eld that investigates semiotic processes in the living realm in an attempt to combine the fi ndings of the biological sciences and semiotics. Semiotic processes are more or less what biologists have typically referred to as “ signals, ” “ codes, ”and “ information processing ”in biosystems, but these processes are here understood under the more general notion of semiosis, that is, the production, action, and interpretation of signs. Thus, biosemiotics can be seen as (...) interpreted as a study of living sign systems — which also means that semiosis or sign process can be seen as the very nature of life itself. In other words, biosemiotics is a field of research investigating semiotic processes (meaning, signification, communication, and habit formation in living systems) and the physicochemical preconditions for sign action and interpretation. -/- (...). (shrink)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  32. Persons Versus Brains: Biological Intelligence in Human Organisms.E. Steinhart - 2001 - Biology and Philosophy 16 (1):3-27.
    I go deep into the biology of the human organism to argue that the psychological features and functions of persons are realized by cellular and molecular parallel distributed processing networks dispersed throughout the whole body. Persons supervene on the computational processes of nervous, endocrine, immune, and genetic networks. Persons do not go with brains.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  33. Biological and linguistic diversity. Transdisciplinary explorations for a socioecology of languages.Albert Bastardas-Boada - 2002 - Diverscité Langues 7.
    As a sort of intellectual provocation and as a lateral thinking strategy for creativity, this chapter seeks to determine what the study of the dynamics of biodiversity can offer linguists. In recent years, the analogical equation "language = biological species" has become more widespread as a metaphorical source for conceptual renovation, and, at the same time, as a justification for the defense of language diversity. Language diversity would be protected in a way similar to the mobilization that has taken place (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. The Origin of Consciousness in a Biological Framework for a Mathematical Universe (23 Pages).Ronald Williams - manuscript
    This essay explores the creation and evolution of life and consciousness through the lens of a biological framework for understanding the universe. The theory posits that the patterns inherent in biological systems mirror the underlying mathematical principles of the cosmos. Thus, every pattern that manifests from the universe’s “parent-pattern” contains a fundamental biological-pattern inherent to its function, revealing the objective nature and purpose of that thing. Examples include the way ocean currents resemble a circulatory system and how socioeconomic phenomena mimic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. Experimental Modeling in Biology: In Vivo Representation and Stand-ins As Modeling Strategies.Marcel Weber - 2014 - Philosophy of Science 81 (5):756-769.
    Experimental modeling in biology involves the use of living organisms (not necessarily so-called "model organisms") in order to model or simulate biological processes. I argue here that experimental modeling is a bona fide form of scientific modeling that plays an epistemic role that is distinct from that of ordinary biological experiments. What distinguishes them from ordinary experiments is that they use what I call "in vivo representations" where one kind of causal process is used to stand in for (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  36. Ontologically significant aggregation: Process structural realism (PSR).Joseph E. Earley - 2008 - In Michel Weber and Will Desmond (ed.), Handbook of Whiteheadian Process Thought. De Gruyter. pp. 2--179.
    Combinations of molecules, of biological individuals, or of chemical processes can produce effects that are not simply attributable to the constituents. Such non-redundant causality warrants recognition of those coherences as ontologically significant whenever that efficacy is relevant. With respect to such interaction, the effective coherence is more real than are the components. This ontological view is a variety of structural realism and is also a kind of process philosophy. The designation ‘process structural realism’ (PSR) seems appropriate.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  37. Biological Agents of Bioremediation: A Concise Review.Karabi Biswas - 2015 - Frontiers in Environmental Microbiology 1 (3):39-43.
    Due to intensive agriculture, rapid industrialization and anthropogenic activities have caused environmental pollution, land degradation and increased pressure on the natural resources and contributing to their adulteration. Bioremediation is the use of biological organisms to destroy, or reduce the hazardous wastes on a contaminated site. Bioremediation is the most potent management tool to control the environmental pollution and recover contaminated soil. Use of biological materials, coupled to other advanced processes is one of the most promising and inexpensive approaches for removing (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. The Use of Video-based Instructional Material to Improve Learning Competency of the Students in Selected Topics in Biology at Satriwithaya School Bangkok Thailand (20th edition).Albert Jayfferson Roy - 2024 - Psychology and Education: A Multidisciplinary Journal 20 (8):1066-1077.
    This research explored the utilization of video-based instructional material in enhancing learning competency among a group of sixty (60) students enrolled in grade 8 at Satriwithaya School in Bangkok, Thailand. The study was carried out. out during the 2nd semester of S.Y. 2023–2024. The respondents were chosen using the approach of purposive sampling. The research study employed an experimental approach and utilized quantitative research. Through the use of of a one-group pre- and post-test, the researcher was able to gather the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. Biological Observer-participation and Wheeler's Law without Law.Brian Josephson - 2012 - In Plamen L. Simeonov, Leslie S. Smith & Andrée C. Ehresmann (eds.), Integral Biomathics: Tracing the Road to Reality. Springer. pp. 245–252.
    It is argued that at a sufficiently deep level the conventional quantitative approach to the study of nature faces difficult problems, and that biological processes should be seen as more fundamental, in a way that can be elaborated on the basis of Peircean semiotics and Yardley's Circular Theory. In such a world-view, Wheeler's observer-participation and emergent law arise naturally, rather than having to be imposed artificially. This points the way to a deeper understanding of nature, where meaning has a fundamental (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  40. Process thought as a heuristic for investigating consciousness.Anderson Weekes & Michel Weber - 2010 - In Michel Weber & Anderson Weekes (eds.), Process Approaches to Consciousness in Psychology, Neuroscience, and Philosophy of Mind. Albany: State University of New York Press. pp. 37-56.
    The authors argue that the consciousness debate inhabits the same problem space today as it did in the 17th century. They attribute the lack of progress to a mindset still polarized by Descartes’ real distinction between mind and body, resulting in a standoff between humanistic and scientistic approaches. They suggest that consciousness can be adequately studied only by a multiplicity of disciplines so that the paramount problem is how to integrate diverse disciplinary perspectives into a coherent metatheory. Process philosophy (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. Complex Systems Biology.Roberto Serra - 2012 - In Vincenzo Fano, Enrico Giannetto, Giulia Giannini & Pierluigi Graziani (eds.), Complessità e Riduzionismo. ISONOMIA - Epistemologica Series Editor. pp. 100-107.
    The term “Complex Systems Biology” was introduced a few years ago [Kaneko, 2006] and, although not yet of widespread use, it seems particularly well suited to indicate an approach to biology which is well rooted in complex systems science. Although broad generalizations are always dangerous, it is safe to state that mainstream biology has been largely dominated by a gene-centric view in the last decades, due to the success of molecular biology. So the one gene - (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. Well-Structured Biology: Numerical Taxonomy's Epistemic Vision for Systematics.Beckett Sterner - 2014 - In Andrew Hamilton (ed.), Patterns in Nature. University of California Press. pp. 213-244.
    What does it look like when a group of scientists set out to re-envision an entire field of biology in symbolic and formal terms? I analyze the founding and articulation of Numerical Taxonomy between 1950 and 1970, the period when it set out a radical new approach to classification and founded a tradition of mathematics in systematic biology. I argue that introducing mathematics in a comprehensive way also requires re-organizing the daily work of scientists in the field. Numerical (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  43. The Biological Framework for a Mathematical Universe.Ronald Williams - unknown - Dissertation, Temple University
    The mathematical universe hypothesis is a theory that the physical universe is not merely described by mathematics, but is mathematics, specifically a mathematical structure. Our research provides evidence that the mathematical structure of the universe is biological in nature and all systems, processes, and objects within the universe function in harmony with biological patterns. Living organisms are the result of the universe’s biological pattern and are embedded within their physiology the patterns of this biological universe. Therefore physiological patterns in living (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. More Plant Biology in Philosophy Education.Özlem Yilmaz - 2021 - Dublin, Ireland: Graphikon Teo.
    This is an article in Thomas J.J. McCloughlin (Ed.) The Nature of Science in Biology: A Resource for Educators. Graphikon Teo, Dublin. -/- Abstract: Philosophers usually tend to think of animals when they think about life, plants often only appear in their works as on the margins, in the background; they are rarely in the centre. However, plant life involves unique processes, including remarkable modes of interaction between plants and their environments. Needless to say, plants are vital parts of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. Origin of Quantum Mechanical Results and Life: A Clue from Quantum Biology.Biswaranjan Dikshit - 2018 - Neuroquantology 16 (4):26-33.
    Although quantum mechanics can accurately predict the probability distribution of outcomes in an ensemble of identical systems, it cannot predict the result of an individual system. All the local and global hidden variable theories attempting to explain individual behavior have been proved invalid by experiments (violation of Bell’s inequality) and theory. As an alternative, Schrodinger and others have hypothesized existence of free will in every particle which causes randomness in individual results. However, these free will theories have failed to quantitatively (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  46. Clarifying The Interface Theory of Perception Using The Biological Framework.Ronald Williams - manuscript
    This essay explains Donald Hoffman's Interface Theory of Perception using The Biological Framework for a Mathematical Universe proposed by Ronald Williams. According to Hoffman, what we perceive is more like a “desktop interface with icons representing complex underlying processes, rather than a direct window into the true nature of the world." The theory of a biological framework for a mathematical universes suggests that these complex underlying processes of “the desktop interface with icons” contain correspondences to biological systems. For example, “the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. On Biologizing Racism.Raamy Majeed - 2024 - British Journal for the Philosophy of Science 75 (3):617-637.
    To biologise racism is to treat racism as a neurological phenomenon susceptible to biochemical intervention. In 'Race on the Brain: What Implicit Bias Gets Wrong About the Struggle for Racial Injustice', Kahn (2018) critiques cognitive psychologists and neuroscientists for framing racism in a way that tends to biologise racism, which he argues draws attention and resources away from non-individualistic solutions to racial inequality. In this paper I argue the psychological sciences can accommodate several of Kahn’s criticisms by adopting a situated (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  48.  63
    (1 other version)Review of: "Many types of electrical nano-sensors using CP nanomaterials designed for nano-biological applications".Afshin Rashid - 2024 - Qeios 8 (815_987654):1 _ 2.
    Note: Many types of nanosensors are designed using CP nanomaterials for nanobiological applications. (Conductive surface) The oxidation of conductive polymeric materials is easily altered by redox mechanisms, and the charge transfer properties of these materials are affected by structural parameters, such as diameter and dimensions. CP materials are able to provide sensitive and rapid responses to specific biological and chemical species. Techniques such as chemical polymerization are often used to make CP nanomaterials. Manufacturing strategies can be divided into three categories: (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. What Constitutes an Explanation in Biology?Angela Potochnik - 2019 - In Kostas Kampourakis & Tobias Uller (eds.), Philosophy of Science for Biologists. New York, NY: Cambridge University Press.
    One of biology's fundamental aims is to generate understanding of the living world around—and within—us. In this chapter, I aim to provide a relatively nonpartisan discussion of the nature of explanation in biology, grounded in widely shared philosophical views about scientific explanation. But this discussion also reflects what I think is important for philosophers and biologists alike to appreciate about successful scientific explanations, so some points will be controversial, at least among philosophers. I make three main points: (1) (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  50. Process structural realism, instance ontology, and societal order.Joseph Earley - 2008 - In Franz Riffert and Hans-Joachim Sander (ed.), Rearching with Whitehead: System and Adventure. Alber. pp. 190-211.
    Whitehead’s cosmology centers on the self-creation of actual occasions that perish as they come to be, but somehow do combine to constitute societies that are persistent agents and/or patients. “Instance Ontology” developed by D.W. Mertz concerns unification of relata into facts of relatedness by specific intensions. These two conceptual systems are similar in that they both avoid the substance-property distinction: they differ in their understanding of how basic units combine to constitute complex unities. “Process Structural Realism” (PSR) draws from (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
1 — 50 / 936