Results for 'quantum mechanics, randomness, Copenhagen interpretation, Many Worlds Interpretation, superdeterminism, cause and effect'

916 found
Order:
  1.  57
    THE NEW PHILOSOPHY OF SUPERDETERMINISM ON QUANTUM RANDOMNESS.John Bannan - manuscript
    The philosophy of superdeterminism is based on a single scientific fact about the universe, namely that cause and effect in physics are not real. In 2020, accomplished Swedish theoretical physicist, Dr. Johan Hansson published a physics proof using Albert Einstein’s Theory of Special Relativity that our universe is superdeterministic meaning a predetermined static block universe without cause and effect in physics. Scientists have observed purely random behavior at the quantum level, which has led some physicists (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. The Philosophy of Superdeterminism: How a New Physics Proof Supports the Existence of God and Human Immortality.John Joseph Bannan - manuscript
    In 2020, Swedish theoretical physicist, Dr. Johan Hansson published a physics proof that our universe is superdeterministic meaning a predetermined static block universe without cause and effect in physics. This physics proof that cause and effect in physics are not real provides a new avenue of insight useful in the philosophy of religion. For example, superdeterminism provides circumstantial scientific evidence of the existence of God and our own immortality in our static block universe. The implications of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3.  95
    What's Wrong with Interpretations of Quantum Mechanics.Paul Merriam & M. A. Z. Habeeb - manuscript
    What's wrong with Copenhagen, GRW, Superdeterminism, QBism, Many-worlds, Bohmianism, and Retrocausality, and how theses differ from Presentist Fragmentalism.
    Download  
     
    Export citation  
     
    Bookmark  
  4. Why the Many-Worlds Interpretation of quantum mechanics needs more than Hilbert space structure.Meir Hemmo & Orly Shenker - 2020 - In Rik Peels, Jeroen de Ridder & René van Woudenberg (eds.), Scientific Challenges to Common Sense Philosophy. New York: Routledge. pp. 61-70.
    McQueen and Vaidman argue that the Many Worlds Interpretation (MWI) of quantum mechanics provides local causal explanations of the outcomes of experiments in our experience that is due to the total effect of all the worlds together. We show that although the explanation is local in one world, it requires a causal influence that travels across different worlds. We further argue that in the MWI the local nature of our experience is not derivable from (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  5. Quantum mechanics as a deterministic theory of a continuum of worlds.Kim Joris Boström - 2015 - Quantum Studies: Mathematics and Foundations 2 (3):315-347.
    A non-relativistic quantum mechanical theory is proposed that describes the universe as a continuum of worlds whose mutual interference gives rise to quantum phenomena. A logical framework is introduced to properly deal with propositions about objects in a multiplicity of worlds. In this logical framework, the continuum of worlds is treated in analogy to the continuum of time points; both “time” and “world” are considered as mutually independent modes of existence. The theory combines elements of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  6. The Problems of Quantum Mechanics and Possible solutions : Copenhagen interpretation, many worlds interpretation, transactional interpretation, decoherence and quantum logic.Rochelle Marianne Forrester - unknown
    This paper reviews some of the literature on the philosophy of quantum mechanics. The publications involved tend to follow similar patterns of first identifying the mysteries, puzzles or paradoxes of the quantum world, and then discussing the existing interpretations of these matters, before the authors produce their own interpretations, or side with one of the existing views. The paper will show that all interpretations of quantum mechanics involve elements of apparent weirdness. They suggest that the quantum (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Zeno Goes to Copenhagen: A Dilemma for Measurement-Collapse Interpretations of Quantum Mechanics.David J. Chalmers & Kelvin J. McQueen - 2023 - In M. C. Kafatos, D. Banerji & D. C. Struppa (eds.), Quantum and Consciousness Revisited. DK Publisher.
    A familiar interpretation of quantum mechanics (one of a number of views sometimes labeled the "Copenhagen interpretation'"), takes its empirical apparatus at face value, holding that the quantum wave function evolves by the Schrödinger equation except on certain occasions of measurement, when it collapses into a new state according to the Born rule. This interpretation is widely rejected, primarily because it faces the measurement problem: "measurement" is too imprecise for use in a fundamental physical theory. We argue (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. Does chance hide necessity ? A reevaluation of the debate ‘determinism - indeterminism’ in the light of quantum mechanics and probability theory.Louis Vervoort - 2013 - Dissertation, University of Montreal
    In this text the ancient philosophical question of determinism (“Does every event have a cause ?”) will be re-examined. In the philosophy of science and physics communities the orthodox position states that the physical world is indeterministic: quantum events would have no causes but happen by irreducible chance. Arguably the clearest theorem that leads to this conclusion is Bell’s theorem. The commonly accepted ‘solution’ to the theorem is ‘indeterminism’, in agreement with the Copenhagen interpretation. Here it is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. The Kochen - Specker theorem in quantum mechanics: a philosophical comment (part 1).Vasil Penchev - 2013 - Philosophical Alternatives 22 (1):67-77.
    Non-commuting quantities and hidden parameters – Wave-corpuscular dualism and hidden parameters – Local or nonlocal hidden parameters – Phase space in quantum mechanics – Weyl, Wigner, and Moyal – Von Neumann’s theorem about the absence of hidden parameters in quantum mechanics and Hermann – Bell’s objection – Quantum-mechanical and mathematical incommeasurability – Kochen – Specker’s idea about their equivalence – The notion of partial algebra – Embeddability of a qubit into a bit – Quantum computer is (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  10. The Quantum Measurement Problem - Collapse of the Wave Function explained.Rochelle Marianne Forrester - unknown
    Quantum physicists have made many attempts to solve the quantum measurement problem, but no solution seems to have received widespread acceptance. The time has come for a new approach. In Sense Perception and Reality: A Theory of Perceptual Relativity, Quantum Mechanics and the Observer Dependent Universe I suggest the quantum measurement problem is caused by a failure to understand that each species has its own sensory world and that when we say the wave function collapses (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. Many- Worlds Interpretation and Quantum Entanglement.Michele Caponigro - manuscript
    We argue from conceptual point of view the relationship between quantum entanglement and many-worlds interpretation of quantum mechanics, the debate is still open, but we retain the objective Bayesian interpretation of quantum probability could be an interesting approach to solve this fundamental question.
    Download  
     
    Export citation  
     
    Bookmark  
  12. Contextual quantum realism and other interpretations of quantum mechanics.Francois-Igor Pris - 2023 - Moscow: Lenand.
    It is proposed a critique of existing interpretations of quantum mechanics, both anti-realistic and realistic, and, in particular, the Copenhagen interpretation, the interpretations with hidden variables, the metaphysical interpretation of H. Everett’s interpretation, the many-worlds interpretation by D. Wallace, QBism by C. Fuchs, D. Mermin and R. Schack, the relational interpretation by C. Rovelli, neo-Kantian and phenomenological interpretations by M. Bitbol, the informational interpretation by A. Zeilinger, the Nobel Prize Winner in Physics 2022, and others. As (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. Quantum Mechanical Reality: Entanglement and Decoherence.Avijit Lahiri - manuscript
    We look into the ontology of quantum theory as distinct from that of the classical theory in the sciences. Theories carry with them their own ontology while the metaphysics may remain the same in the background. We follow a broadly Kantian tradition, distinguishing between the noumenal and phenomenal realities where the former is independent of our perception while the latter is assembled from the former by means of fragmentary bits of interpretation. Theories do not tell us how the noumenal (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. On Some Metaphysical problems of Many Worlds Interpretation of Quantum Mechanics.Victor Christianto & Florentin Smarandache - manuscript
    Despite its enormous practical success, many physicists and philosophers alike agree that the quantum theory is full of contradictions and paradoxes which are difficult to solve consistently. Even after 90 years, the experts themselves still do not all agree what to make of it. The area of disagreement centers primarily around the problem of describing observations. Formally, the so-called quantum measurement problem can be defined as follows: the result of a measurement is a superposition of vectors, each (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. Why anything rather than nothing? The answer of quantum mechanics.Vasil Penchev - 2019 - In Aleksandar Feodorov & Ivan Mladenov (eds.), Non/Cognate Approaches: Relation & Representation. "Парадигма". pp. 151-172.
    Many researchers determine the question “Why anything rather than nothing?” as the most ancient and fundamental philosophical problem. Furthermore, it is very close to the idea of Creation shared by religion, science, and philosophy, e.g. as the “Big Bang”, the doctrine of “first cause” or “causa sui”, the Creation in six days in the Bible, etc. Thus, the solution of quantum mechanics, being scientific in fact, can be interpreted also philosophically, and even religiously. However, only the philosophical (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  16. Why the de Broglie-Bohm theory is probably wrong.Shan Gao - manuscript
    We investigate the validity of the field explanation of the wave function by analyzing the mass and charge density distributions of a quantum system. It is argued that a charged quantum system has effective mass and charge density distributing in space, proportional to the square of the absolute value of its wave function. This is also a consequence of protective measurement. If the wave function is a physical field, then the mass and charge density will be distributed in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Superdeterminism: a reappraisal.Giacomo Andreoletti & Louis Vervoort - 2022 - Synthese 200 (5):1-20.
    This paper addresses a particular interpretation of quantum mechanics, i.e. superdeterminism. In short, superdeterminism i) takes the world to be fundamentally deterministic, ii) postulates hidden variables, and iii) contra Bell, saves locality at the cost of violating the principle of statistical independence. Superdeterminism currently enjoys little support in the physics and philosophy communities. Many take it to posit the ubiquitous occurrence of hard-to-digest conspiratorial and coincidental events; others object that violating the principle of statistical independence implies the death (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  18. Ontology of the wave function and the many-worlds interpretation.Lev Vaidman (ed.) - 2019 - Cambridge University Press, UK.
    It is argued that the many-worlds interpretation is by far the best interpretation of quantum mechanics. The key points of this view are viewing the wave functions of worlds in three dimensions and understanding probability through self-locating uncertainty.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  19. Many Worlds, the Born Rule, and Self-Locating Uncertainty.Sean M. Carroll & Charles T. Sebens - 2013 - In Daniele C. Struppa & Jeffrey M. Tollaksen (eds.), Quantum Theory: A Two-Time Success Story: Yakir Aharonov Festschrift. Milano: Springer. pp. 157-169.
    We provide a derivation of the Born Rule in the context of the Everett (Many-Worlds) approach to quantum mechanics. Our argument is based on the idea of self-locating uncertainty: in the period between the wave function branching via decoherence and an observer registering the outcome of the measurement, that observer can know the state of the universe precisely without knowing which branch they are on. We show that there is a uniquely rational way to apportion credence in (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  20. Confirmation in a Branching World: The Everett Interpretation and Sleeping Beauty.Darren Bradley - 2011 - British Journal for the Philosophy of Science 62 (2):323-342.
    Sometimes we learn what the world is like, and sometimes we learn where in the world we are. Are there any interesting differences between the two kinds of cases? The main aim of this article is to argue that learning where we are in the world brings into view the same kind of observation selection effects that operate when sampling from a population. I will first explain what observation selection effects are ( Section 1 ) and how they are relevant (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  21.  23
    Not Just Many Worlds but Many Universes? A Problem for the Many Worlds View of Quantum Mechanics.Peter Baumann - 2022 - Metaphysica 23 (2):295-305.
    The many-worlds view is one of the most discussed “interpretations” of quantum mechanics. As is well known, this view has some very controversial and much discussed aspects. This paper focuses on one particular problem arising from the combination of quantum mechanics with Special Relativity. It turns out that the ontology of the many-worlds view – the account of what there is and what branches of the universe exist – is relative to inertial frames. If (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. A single-world consistent interpretation of quantum mechanics from fundamental time and length uncertainties.Rodolfo Gambini, Luis Pedro Garcia-Pintos & Jorge Pullin - 2018 - Physical Review A 100 (012).
    Within ordinary ---unitary--- quantum mechanics there exist global protocols that allow to verify that no definite event ---an outcome to which a probability can be associated--- occurs. Instead, states that start in a coherent superposition over possible outcomes always remain as a superposition. We show that, when taking into account fundamental errors in measuring length and time intervals, that have been put forward as a consequence of a conjunction of quantum mechanical and general relativity arguments, there are instances (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. The Argument from Locality for Many Worlds Quantum Mechanics.Alyssa Ney - forthcoming - Journal of Philosophy.
    One motivation for preferring the many worlds interpretation of quantum mechanics over realist rivals, such as collapse and hidden variables theories, is that the interpretation is able to preserve locality (in the sense of no action at a distance) in a way these other theories cannot. The primary goal of this paper is to make this argument for the many worlds interpretation precise, in a way that does not rely on controversial assumptions about the metaphysics (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. Systems with Single Degree of Freedom and the Interpretation of Quantum Mechanics.Mehran Shaghaghi - manuscript
    Physical systems can store information and their informational properties are governed by the laws of information. In particular, the amount of information that a physical system can convey is limited by the number of its degrees of freedom and their distinguishable states. Here we explore the properties of the physical systems with absolutely one degree of freedom. The central point in these systems is the tight limitation on their information capacity. Discussing the implications of this limitation we demonstrate that such (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. Quantum Mechanics, Metaphysics, and Bohm's Implicate Order.George Williams - 2019 - Mind and Matter 2 (17):155-186.
    The persistent interpretation problem for quantum mechanics may indicate an unwillingness to consider unpalatable assumptions that could open the way toward progress. With this in mind, I focus on the work of David Bohm, whose earlier work has been more influential than that of his later. As I’ll discuss, I believe two assumptions play a strong role in explaining the disparity: 1) that theories in physics must be grounded in mathematical structure and 2) that consciousness must supervene on material (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. Macroscopic Quantum Superpositions Cannot Be Measured, Even in Principle.Andrew Knight - manuscript
    I show in this paper why the universality of quantum mechanics at all scales, which implies the possibility of Schrodinger's Cat and Wigner's Friend thought experiments, cannot be experimentally confirmed, and why macroscopic superpositions in general cannot be observed or measured, even in principle. Through the relativity of quantum superposition and the transitivity of correlation, it is shown that from the perspective of an object that is in quantum superposition relative to a macroscopic measuring device and observer, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. Fundamentality and Levels in Everettian Quantum Mechanics.Alastair Wilson - 2022 - In Valia Allori (ed.), Quantum Mechanics and Fundamentality: Naturalizing Quantum Theory between Scientific Realism and Ontological Indeterminacy. Cham: Springer.
    Distinctions in fundamentality between different levels of description are central to the viability of contemporary decoherence-based Everettian quantum mechanics (EQM). This approach to quantum theory characteristically combines a determinate fundamental reality (one universal wave function) with an indeterminate emergent reality (multiple decoherent worlds). In this chapter I explore how the Everettian appeal to fundamentality and emergence can be understood within existing metaphysical frameworks, identify grounding and concept fundamentality as promising theoretical tools, and use them to characterize a (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  28. If Quantum Mechanics Is the Solution, What Should the Problem Be?Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (32):1-10.
    The paper addresses the problem, which quantum mechanics resolves in fact. Its viewpoint suggests that the crucial link of time and its course is omitted in understanding the problem. The common interpretation underlain by the history of quantum mechanics sees discreteness only on the Plank scale, which is transformed into continuity and even smoothness on the macroscopic scale. That approach is fraught with a series of seeming paradoxes. It suggests that the present mathematical formalism of quantum mechanics (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  29. Self-locating Uncertainty and the Origin of Probability in Everettian Quantum Mechanics.Charles T. Sebens & Sean M. Carroll - 2016 - British Journal for the Philosophy of Science (1):axw004.
    A longstanding issue in attempts to understand the Everett (Many-Worlds) approach to quantum mechanics is the origin of the Born rule: why is the probability given by the square of the amplitude? Following Vaidman, we note that observers are in a position of self-locating uncertainty during the period between the branches of the wave function splitting via decoherence and the observer registering the outcome of the measurement. In this period it is tempting to regard each branch as (...)
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  30. Consciousness and self-location.Yu Feng - manuscript
    Starting from the many-world interpretation of quantum mechanics, this work gives a holistic view of consciousness. The entirety is complete and does not possess any particular physical properties or subjective experience. It is the superposition of all possibilities. Its partition, however, gives rise to physical properties and subjective experience simultaneously. They play complementary roles to each other. The latter cannot be conveyed to a third person, and cannot be reduced to the former. It in fact fills the informational (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. An interpretation of the formalism of quantum mechanics in terms of realism.Arthur Jabs - 1992 - British Journal for the Philosophy of Science 43 (3):405-421.
    We present an alternative to the Copenhagen interpretation of the formalism of nonrelativistic quantum mechanics. The basic difference is that the new inter- pretation is formulated in the language of epistemological realism. It involves a change in some basic physical concepts. Elementary particles are considered as extended objects and nonlocal effects are included. The role of the new concepts in the problems of measurement and of the Einstein-Podolsky-Rosen correlations is described. Experiments to distinguish the proposed interpretation from the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  32. Subjective probability and quantum certainty.Carlton M. Caves, Christopher A. Fuchs & Rüdiger Schack - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):255-274.
    In the Bayesian approach to quantum mechanics, probabilities—and thus quantum states—represent an agent’s degrees of belief, rather than corresponding to objective properties of physical systems. In this paper we investigate the concept of certainty in quantum mechanics. Particularly, we show how the probability-1 predictions derived from pure quantum states highlight a fundamental difference between our Bayesian approach, on the one hand, and Copenhagen and similar interpretations on the other. We first review the main arguments for (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  33. How Quantum Mechanics Can Consistently Describe the Use of Itself.Dustin Lazarovici & Mario Hubert - 2019 - Scientific Reports 470 (9):1-8.
    We discuss the no-go theorem of Frauchiger and Renner based on an "extended Wigner's friend" thought experiment which is supposed to show that any single-world interpretation of quantum mechanics leads to inconsistent predictions if it is applicable on all scales. We show that no such inconsistency occurs if one considers a complete description of the physical situation. We then discuss implications of the thought experiment that have not been clearly addressed in the original paper, including a tension between relativity (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  34. The 'Noncausal Causality' of Quantum Information.Vasil Penchev - 2021 - Philosophy of Science eJournal (Elsevier: SSRN) 14 (45):1-7.
    The paper is concentrated on the special changes of the conception of causality from quantum mechanics to quantum information meaning as a background the revolution implemented by the former to classical physics and science after Max Born’s probabilistic reinterpretation of wave function. Those changes can be enumerated so: (1) quantum information describes the general case of the relation of two wave functions, and particularly, the causal amendment of a single one; (2) it keeps the physical description to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. About Fuzzy time-Particle interpretation of Quantum Mechanics (it is not an innocent one!) version one.Farzad Didehvar - manuscript
    The major point in [1] chapter 2 is the following claim: “Any formalized system for the Theory of Computation based on Classical Logic and Turing Model of Computation leads us to a contradiction.” So, in the case we wish to save Classical Logic we should change our Computational Model. As we see in chapter two, the mentioned contradiction is about and around the concept of time, as it is in the contradiction of modified version of paradox. It is natural to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  36. The Wave Function and Its Evolution.Shan Gao - 2011
    The meaning of the wave function and its evolution are investigated. First, we argue that the wave function in quantum mechanics is a description of random discontinuous motion of particles, and the modulus square of the wave function gives the probability density of the particles being in certain locations in space. Next, we show that the linear non-relativistic evolution of the wave function of an isolated system obeys the free Schrödinger equation due to the requirements of spacetime translation invariance (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. How the Many Worlds Interpretation brings Common Sense to Paradoxical Quantum Experiments.Kelvin J. McQueen & Lev Vaidman - 2020 - In Rik Peels, Jeroen de Ridder & René van Woudenberg (eds.), Scientific Challenges to Common Sense Philosophy. New York: Routledge. pp. 40-60.
    The many worlds interpretation of quantum mechanics (MWI) states that the world we live in is just one among many parallel worlds. It is widely believed that because of this commitment to parallel worlds, the MWI violates common sense. Some go so far as to reject the MWI on this basis. This is despite its myriad of advantages to physics (e.g. consistency with relativity theory, mathematical simplicity, realism, determinism, etc.). Here, we make the case (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  38. The Bohr and Einstein debate - Copenhagen Interpretation challenged.Rochelle Marianne Forrester - unknown
    The Bohr Einstein debate on the meaning of quantum physics involved Einstein inventing a series of thought experiments to challenge the Copenhagen Interpretation of quantum physics. Einstein disliked many aspects of the Copenhagen Interpretation especially its idea of an observer dependent universe. Bohr was able to answer all Einstein’s objections to the Copenhagen Interpretation and so is usually considered as winning the debate. However the debate has continued into the present time as many (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. Sense Perception and Reality - A theory of perceptual relativity, quantum mechanics and the observer dependent universe.Rochelle Forrester (ed.) - 2014 - Best publications.
    Sense perception and Reality examines the remarkable similarities between philosophical idealism and the Copenhagen Interpretation of quantum physics. The book looks at perceptual relativity involving animal senses, neurology and cognitive psychology. It concludes the universe is observer dependent and varies with the sensory apparatus used to observe it. The Copenhagen Interpretation is examined and perceptual relativity would appear to apply in the quantum world. The Copenhagen Interpretation suggests the universe is observer dependent, the same conclusion (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. A Comparative Analysis of David Lewis' Modal Realism and Everett's Many Worlds on Closed Time-like Curves and Time Travel.Fabian Kerj - 2023 - Dissertation, King's College London
    This paper explores the physical and metaphysical implications of time travel, focusing on the possibility of changing the past, through a comparative analysis of David Lewis' modal realism and Everett's many-worlds interpretation of quantum mechanics. The existence of closed timelike curves (CTCs) in certain solutions to Einstein's field equations provides a theoretical basis for the possibility of backwards time travel, but this leads to a range of paradoxes, most notably the grandfather paradox. David Lewis argues that time (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. Worlds in a Stochastic Universe: On the Emergence of World Histories in Minimal Bohmian Mechanics.Alexander Ehmann - 2020 - Dissertation, Lingnan University
    This thesis develops a detailed account of the emergence of for all practical purposes continuous, quasi-classical world histories from the discontinuous, stochastic micro dynamics of Minimal Bohmian Mechanics (MBM). MBM is a non-relativistic quantum theory. It results from excising the guiding equation from standard Bohmian Mechanics (BM) and reinterpreting the quantum equilibrium hypothesis as a stochastic guidance law for the random actualization of configurations of Bohmian particles. On MBM, there are no continuous trajectories linking up individual configurations. Instead, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  42. Incoherent? No, Just Decoherent: How Quantum Many Worlds Emerge.Alexander Franklin - forthcoming - Philosophy of Science.
    The modern Everett interpretation of quantum mechanics describes an emergent multiverse. The goal of this paper is to provide a perspicuous characterisation of how the multiverse emerges making use of a recent account of (weak) ontological emergence. This will be cashed out with a case study that identifies decoherence as the mechanism for emergence. The greater metaphysical clarity enables the rebuttal of critiques due to Baker (2007) and Dawid and Th\'ebault (2015) that cast the emergent multiverse ontology as incoherent; (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  43. A simple proof of Born’s rule for statistical interpretation of quantum mechanics.Biswaranjan Dikshit - 2017 - Journal for Foundations and Applications of Physics 4 (1):24-30.
    The Born’s rule to interpret the square of wave function as the probability to get a specific value in measurement has been accepted as a postulate in foundations of quantum mechanics. Although there have been so many attempts at deriving this rule theoretically using different approaches such as frequency operator approach, many-world theory, Bayesian probability and envariance, literature shows that arguments in each of these methods are circular. In view of absence of a convincing theoretical proof, recently (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  44. Metaphysics of quantum mechanics.Craig Callender - 2009 - In Compendium of Quantum Physics. Berlin Heidelberg: Springer-Verlag. pp. 384-389.
    Quantum mechanics, like any physical theory, comes equipped with many metaphysical assumptions and implications. The line between metaphysics and physics is often blurry, but as a rough guide, one can think of a theory’s metaphysics as those foundational assumptions made in its interpretation that are not usually directly tested in experiment. In classical mechanics some examples of possible metaphysical assumptions are the claims that forces are real, that inertial mass is primitive, and that space is substantival. The distinctive (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. How in the World are There Many Worlds?Logan Carter - manuscript
    This paper explores personal identity and persistence through time in the Many Worlds Interpretation (MWI) of quantum mechanics (QM). First, I will motivate the MWI’s relevance in the domain of metaphysics. Second, I will define endurantism. Third, I will explain the foundational physics underlying the MWI which entails branching worlds. Finally, I will argue that the privileged branch view best captures endurantist judgments about personal identity and persistence through time in the many-worlds framework. (Note (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Betty Brancher and the Privileged Branch View of Personal Identity in the Many Worlds Framework.Logan Carter - manuscript
    This is an extension of my earlier work, How in the World Are There Many Worlds and it's a lot more interesting! This paper explores personal identity and persistence through time in the many-worlds framework, governed by the Many Worlds Interpretation (MWI) of quantum mechanics (QM). First, I will motivate our consideration of the MWI in this context. Second, I will introduce endurantism, which is one answer to the puzzle concerning persistence through time. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. A New Theory of Free Will.Marcus Arvan - 2013 - Philosophical Forum 44 (1):1-48.
    This paper shows that several live philosophical and scientific hypotheses – including the holographic principle and multiverse theory in quantum physics, and eternalism and mind-body dualism in philosophy – jointly imply an audacious new theory of free will. This new theory, "Libertarian Compatibilism", holds that the physical world is an eternally existing array of two-dimensional information – a vast number of possible pasts, presents, and futures – and the mind a nonphysical entity or set of properties that "read" that (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  48. (2 other versions)Linguistic Copenhagen interpretation of quantum mechanics: Quantum Language [Ver. 4].Shiro Ishikawa - manuscript
    Recently we proposed “quantum language" (or,“the linguistic Copenhagen interpretation of quantum mechanics"), which was not only characterized as the metaphysical and linguistic turn of quantum mechanics but also the linguistic turn of Descartes=Kant epistemology. Namely, quantum language is the scientific final goal of dualistic idealism. It has a great power to describe classical systems as well as quantum systems. Thus, we believe that quantum language is the language in which science is written. The (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  49. An Analogy for the Relativistic Quantum Mechanics through a Model of De Broglie Wave-covariant Ether.Mohammed Sanduk - 2018 - International Journal of Quantum Foundations 4 (2):173 - 198.
    Based on de Broglie’s wave hypothesis and the covariant ether, the Three Wave Hypothesis (TWH) has been proposed and developed in the last century. In 2007, the author found that the TWH may be attributed to a kinematical classical system of two perpendicular rolling circles. In 2012, the author showed that the position vector of a point in a model of two rolling circles in plane can be transformed to a complex vector under a proposed effect of partial observation. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. The physics and metaphysics of Tychistic Bohmian Mechanics.Patrick Duerr & Alexander Ehmann - 2021 - Studies in History and Philosophy of Science Part A 90:168-183.
    The paper takes up Bell's “Everett theory” and develops it further. The resulting theory is about the system of all particles in the universe, each located in ordinary, 3-dimensional space. This many-particle system as a whole performs random jumps through 3N-dimensional configuration space – hence “Tychistic Bohmian Mechanics”. The distribution of its spontaneous localisations in configuration space is given by the Born Rule probability measure for the universal wavefunction. Contra Bell, the theory is argued to satisfy the minimal desiderata (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
1 — 50 / 916