Results for 'quantum randomness'

916 found
Order:
  1.  74
    THE NEW PHILOSOPHY OF SUPERDETERMINISM ON QUANTUM RANDOMNESS.John Bannan - manuscript
    The philosophy of superdeterminism is based on a single scientific fact about the universe, namely that cause and effect in physics are not real. In 2020, accomplished Swedish theoretical physicist, Dr. Johan Hansson published a physics proof using Albert Einstein’s Theory of Special Relativity that our universe is superdeterministic meaning a predetermined static block universe without cause and effect in physics. Scientists have observed purely random behavior at the quantum level, which has led some physicists to claim that our (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. What Have Google’s Random Quantum Circuit Simulation Experiments Demonstrated about Quantum Supremacy?Jack K. Horner & John Symons - 2021 - In Hamid R. Arabnia, Leonidas Deligiannidis, Fernando G. Tinetti & Quoc-Nam Tran (eds.), Advances in Software Engineering, Education, and E-Learning: Proceedings From Fecs'20, Fcs'20, Serp'20, and Eee'20. Springer.
    Quantum computing is of high interest because it promises to perform at least some kinds of computations much faster than classical computers. Arute et al. 2019 (informally, “the Google Quantum Team”) report the results of experiments that purport to demonstrate “quantum supremacy” – the claim that the performance of some quantum computers is better than that of classical computers on some problems. Do these results close the debate over quantum supremacy? We argue that they do (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. God is Random: A Novel Argument for the Existence of God.Serkan Zorba - 2016 - European Journal of Science and Theology 12 (1):51-67.
    Applying the concepts of Kolmogorov-Chaitin complexity and Turing’s uncomputability from the computability and algorithmic information theories to the irreducible and incomputable randomness of quantum mechanics, a novel argument for the existence of God is presented. Concepts of ‘transintelligence’ and ‘transcausality’ are introduced, and from them, it is posited that our universe must be epistemologically and ontologically an open universe. The proposed idea also proffers a new perspective on the nonlocal nature and the infamous wave-function-collapse problem of quantum (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  4. Quantum Molinism.Thomas Harvey, Frederick Kroon, Karl Svozil & Cristian Calude - 2022 - European Journal for Philosophy of Religion 14 (3):167-194.
    In this paper we consider the possibility of a Quantum Molinism : such a view applies an analogue of the Molinistic account of free will‘s compatibility with God’s foreknowledge to God’s knowledge of (supposedly) indeterministic events at a quantum level. W e ask how (and why) a providential God could care for and know about a world with this kind of indeterminacy. We consider various formulations of such a Quantum Molinism, and after rejecting a number of options (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Can (quantum) information be sorted out from quantum mechanics?Michele Caponigro & Stefano Mancini - 2009 - NQ Journal.
    We shall draw an affirmative answer to the question posed in the title. The key point will be a quantum description of physical reality. Once fixed at ontic level two basic elements, namely the laws of physics and the matter, we argue that the underlying physical reality emerges from the interconnection between these two elements. We consider any physical process, including measurement, modeled by unitary evolution. In this context, we will deduce quantum random- ness as a consequence of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. Origin of Quantum Mechanical Results and Life: A Clue from Quantum Biology.Biswaranjan Dikshit - 2018 - Neuroquantology 16 (4):26-33.
    Although quantum mechanics can accurately predict the probability distribution of outcomes in an ensemble of identical systems, it cannot predict the result of an individual system. All the local and global hidden variable theories attempting to explain individual behavior have been proved invalid by experiments (violation of Bell’s inequality) and theory. As an alternative, Schrodinger and others have hypothesized existence of free will in every particle which causes randomness in individual results. However, these free will theories have failed (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  7. Our Universe’s Fingerprint: Why Zero Point Radiation Occurs and Are Quantum Fluctuations Truly Random?David Angell - manuscript
    Absolute nothing is the absence of our universe and its laws. Without these rules, nothingness has infinite potential. This implies that within the infinite probability of nothing, infinity can emerge. This would be expressed through infinite universes like our own. Infinite of these universes will differ by several particles, appearing and disappearing for no reason other than fulfilling every possibility. This universe is the product of a greater realisation of infinity and we can test this theory via the measurement of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. Quantum Indeterminacy and Libertarian Panpsychism.M. Masi - 2024 - Mind and Matter 22 (1):31-50.
    The “consequence argument”, together with the “luck objection”, which are summed up by the “standard argument against free will”, state that if our volition were dependent on physical causally indeterministic processes, our actions would lack control and, thereby, result in random behavior that would be a mere matter of luck and chance. In particular, quantum indeterminacy is supposed to be of no use in support of libertarian agent-causation theories because any volitional act interfering with the probability distributions de fining (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. Quantum Mechanical Reality: Entanglement and Decoherence.Avijit Lahiri - manuscript
    We look into the ontology of quantum theory as distinct from that of the classical theory in the sciences. Theories carry with them their own ontology while the metaphysics may remain the same in the background. We follow a broadly Kantian tradition, distinguishing between the noumenal and phenomenal realities where the former is independent of our perception while the latter is assembled from the former by means of fragmentary bits of interpretation. Theories do not tell us how the noumenal (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. How Has Quantum Physics Affected the Free Will Debate?Neer Singhal - manuscript
    This paper discusses the extent to which advances in quantum physics can affect ideas of free will and determinism. It questions whether arguments that conclude the existence of free will from quantum physics are as valid as they seem. -/- The paper discusses the validity of Searle’s philosophy of mind, Robert Kane’s parallel processing, and Ted Honderich’s near-determinism, as well as dealing with chaos theory, the relationship between ‘randomness’ and ‘unpredictability,’ and Bell’s theorem, discussing how they can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. Quantum mechanics as a deterministic theory of a continuum of worlds.Kim Joris Boström - 2015 - Quantum Studies: Mathematics and Foundations 2 (3):315-347.
    A non-relativistic quantum mechanical theory is proposed that describes the universe as a continuum of worlds whose mutual interference gives rise to quantum phenomena. A logical framework is introduced to properly deal with propositions about objects in a multiplicity of worlds. In this logical framework, the continuum of worlds is treated in analogy to the continuum of time points; both “time” and “world” are considered as mutually independent modes of existence. The theory combines elements of Bohmian mechanics and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  12. Quantum Indeterminism, Free Will, and Self-Causation.Marco Masi - 2023 - Journal of Consciousness Studies 30 (5-6):32–56.
    A view that emancipates free will by means of quantum indeterminism is frequently rejected based on arguments pointing out its incompatibility with what we know about quantum physics. However, if one carefully examines what classical physical causal determinism and quantum indeterminism are according to physics, it becomes clear what they really imply–and, especially, what they do not imply–for agent-causation theories. Here, we will make necessary conceptual clarifications on some aspects of physical determinism and indeterminism, review some of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  13. Time's Arrow in a Quantum Universe: On the Status of Statistical Mechanical Probabilities.Eddy Keming Chen - 2020 - In Valia Allori (ed.), Statistical Mechanics and Scientific Explanation: Determinism, Indeterminism and Laws of Nature. Singapore: World Scientific. pp. 479–515.
    In a quantum universe with a strong arrow of time, it is standard to postulate that the initial wave function started in a particular macrostate---the special low-entropy macrostate selected by the Past Hypothesis. Moreover, there is an additional postulate about statistical mechanical probabilities according to which the initial wave function is a ''typical'' choice in the macrostate. Together, they support a probabilistic version of the Second Law of Thermodynamics: typical initial wave functions will increase in entropy. Hence, there are (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  14. The Stochastic-Quantum Theorem.Jacob A. Barandes - manuscript
    This paper introduces several new classes of mathematical structures that have close connections with physics and with the theory of dynamical systems. The most general of these structures, called generalized stochastic systems, collectively encompass many important kinds of stochastic processes, including Markov chains and random dynamical systems. This paper then states and proves a new theorem that establishes a precise correspondence between any generalized stochastic system and a unitarily evolving quantum system. This theorem therefore leads to a new formulation (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  15. The 'Noncausal Causality' of Quantum Information.Vasil Penchev - 2021 - Philosophy of Science eJournal (Elsevier: SSRN) 14 (45):1-7.
    The paper is concentrated on the special changes of the conception of causality from quantum mechanics to quantum information meaning as a background the revolution implemented by the former to classical physics and science after Max Born’s probabilistic reinterpretation of wave function. Those changes can be enumerated so: (1) quantum information describes the general case of the relation of two wave functions, and particularly, the causal amendment of a single one; (2) it keeps the physical description to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. Deterministic and indeterministic morality and duality. Quantum and philosophical approach.Darwin Deivy Zambrano Castellano - manuscript
    Quantum mechanics is a fundamental theory in physics that describes the behavior of subatomic particles and systems at very small scales. Unlike classical theories, quantum mechanics introduces elements of indeterminism in the description of physical phenomena. There are fundamental limits to the precision with which certain physical properties, such as the position and momentum of a particle, can be measured simultaneously. This implies that, even if all the initial conditions of a quantum system are known, its future (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Many Worlds as Anti-Conspiracy Theory: Locally and causally explaining a quantum world without finetuning.Siddharth Muthukrishnan - manuscript
    Why are quantum correlations so puzzling? A standard answer is that they seem to require either nonlocal influences or conspiratorial coincidences. This suggests that by embracing nonlocal influences we can avoid conspiratorial fine-tuning. But that’s not entirely true. Recent work, leveraging the framework of graphical causal models, shows that even with nonlocal influences, a kind of fine-tuning is needed to recover quantum correlations. This fine-tuning arises because the world has to be just so as to disable the use (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. Systems with Single Degree of Freedom and the Interpretation of Quantum Mechanics.Mehran Shaghaghi - manuscript
    Physical systems can store information and their informational properties are governed by the laws of information. In particular, the amount of information that a physical system can convey is limited by the number of its degrees of freedom and their distinguishable states. Here we explore the properties of the physical systems with absolutely one degree of freedom. The central point in these systems is the tight limitation on their information capacity. Discussing the implications of this limitation we demonstrate that such (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. Biological utilization of quantum nonlocality.Brian D. Josephson & Fotini Pallikari-Viras - 1991 - Foundations of Physics 21 (2):197-207.
    The perception of reality by biosystems is based on different, and in certain respects more effective, principles than those utilized by the more formal procedures of science. As a result, what appears as random pattern to the scientific method can be meaningful pattern to a living organism. The existence of this complementary perception of reality makes possible in principle effective use by organisms of the direct interconnections between spatially separated objects shown to exist in the work of J. S. Bell.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  20. The Kochen - Specker theorem in quantum mechanics: a philosophical comment (part 1).Vasil Penchev - 2013 - Philosophical Alternatives 22 (1):67-77.
    Non-commuting quantities and hidden parameters – Wave-corpuscular dualism and hidden parameters – Local or nonlocal hidden parameters – Phase space in quantum mechanics – Weyl, Wigner, and Moyal – Von Neumann’s theorem about the absence of hidden parameters in quantum mechanics and Hermann – Bell’s objection – Quantum-mechanical and mathematical incommeasurability – Kochen – Specker’s idea about their equivalence – The notion of partial algebra – Embeddability of a qubit into a bit – Quantum computer is (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  21. A Survey on Uncertainty Relations and Quantum Measurements: Arguments for Lucrative Parsimony in Approaches of Matters.Dumitru Spiridon - 2021 - Progress in Physics 17 (1):38-70.
    This survey tries to investigate the truths and deficiencies of prevalent philosophy about Uncertainty Relations (UR) and Quantum Measurements (QMS). The respective philosophy, known as being eclipsed by unfinished controversies, is revealed to be grounded on six basic precepts. But one finds that all the respective precepts are discredited by insurmountable deficiencies. So, in regard to UR, the alluded philosophy discloses oneself to be an unjustified mythology. Then UR appear either as short-lived historical conventions or as simple and limited (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. Can we close the Bohr-Einstein quantum debate.Marian Kupczynski - 2017 - Philosophical Transactions of the Royal Society A 375:20160392..
    Recent experiments allowed concluding that Bell-type inequalities are indeed violated thus it is important to understand what it means and how can we explain the existence of strong correlations between outcomes of distant measurements. Do we have to announce that: Einstein was wrong, Nature is nonlocal and nonlocal correlations are produced due to the quantum magic and emerge, somehow, from outside space-time? Fortunately such conclusions are unfounded because if supplementary parameters describing measuring instruments are correctly incorporated in a theoretical (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  23. (1 other version)Wolpert, Chaitin and Wittgenstein on impossibility, incompleteness, the liar paradox, theism, the limits of computation, a non-quantum mechanical uncertainty principle and the universe as computer—the ultimate theorem in Turing Machine Theory (revised 2019).Michael Starks - 2019 - In Suicidal Utopian Delusions in the 21st Century -- Philosophy, Human Nature and the Collapse of Civilization-- Articles and Reviews 2006-2019 4th Edition Michael Starks. Las Vegas, NV USA: Reality Press. pp. 294-299.
    I have read many recent discussions of the limits of computation and the universe as computer, hoping to find some comments on the amazing work of polymath physicist and decision theorist David Wolpert but have not found a single citation and so I present this very brief summary. Wolpert proved some stunning impossibility or incompleteness theorems (1992 to 2008-see arxiv dot org) on the limits to inference (computation) that are so general they are independent of the device doing the computation, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. Spontaneous emerging of material by applying the Darwin's evolutionary theory to in quantum realm and its impact on simplifying the dilemmas.Vahid Dabbagh - manuscript
    What is the boundary between the animate and inanimate world? It is obvious that the animate world is under rules of inanimate world. Is the converse true? This paper is aimed at imposing the well-known Darwin's theory of evolution to inanimate world of atomic realm where bizarre behavior of electron challenges our everyday perception of inanimate world. This paper, suggests a weird, peculiar and highly elegant speculation of existing, leads suspicious about validity of the law of conservation of mass, provides (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. The Boy Who Grew a New Brain: Understanding this Miracle from a Neuro-Quantum Perspective.Contzen Pereira & Jumpal Shashi Kiran Reddy - 2018 - Neuroquantology 16 (7):39-48.
    In this paper, we present a case of a boy – Noah Wall, who till today surprises the world of neuroscience with his will to grow his brain and survive. The case presented in this study sets a stepping stone in understanding the advent of the will to make a choice, from a neuro-quantum mechanics interpretation. We propose that besides our internal states of choices (neurogenesis, neuroplasticity, cell differentiation, etc.) we also relate with external states of choices (love, compassion, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. Indeterminism and Undecidability.Klaas Landsman - forthcoming - In Undecidability, Uncomputability, and Unpredictability. Cham: Springer Nature.
    The aim of this paper is to argue that the (alleged) indeterminism of quantum mechanics, claimed by adherents of the Copenhagen interpretation since Born (1926), can be proved from Chaitin's follow-up to Goedel's (first) incompleteness theorem. In comparison, Bell's (1964) theorem as well as the so-called free will theorem-originally due to Heywood and Redhead (1983)-left two loopholes for deterministic hidden variable theories, namely giving up either locality (more precisely: local contextuality, as in Bohmian mechanics) or free choice (i.e. uncorrelated (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  27. The Wave Function and Particle Ontology.Shan Gao - 2014
    In quantum mechanics, the wave function of a N-body system is a mathematical function defined in a 3N-dimensional configuration space. We argue that wave function realism implies particle ontology when assuming: (1) the wave function of a N-body system describes N physical entities; (2) each triple of the 3N coordinates of a point in configuration space that relates to one physical entity represents a point in ordinary three-dimensional space. Moreover, the motion of particles is random and discontinuous.
    Download  
     
    Export citation  
     
    Bookmark  
  28. Operational axioms for diagonalizing states.Giulio Chiribella & Carlo Maria Scandolo - 2015 - EPTCS 195:96-115.
    In quantum theory every state can be diagonalized, i.e. decomposed as a convex combination of perfectly distinguishable pure states. This elementary structure plays an ubiquitous role in quantum mechanics, quantum information theory, and quantum statistical mechanics, where it provides the foundation for the notions of majorization and entropy. A natural question then arises: can we reconstruct these notions from purely operational axioms? We address this question in the framework of general probabilistic theories, presenting a set of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. You Only Live Twice: A Computer Simulation of the Past Could be Used for Technological Resurrection.Alexey Turchin - manuscript
    Abstract: In the future, it will be possible to create advance simulations of ancestor in computers. Superintelligent AI could make these simulations very similar to the real past by creating a simulation of all of humanity. Such a simulation would use all available data about the past, including internet archives, DNA samples, advanced nanotech-based archeology, human memories, as well as text, photos and videos. This means that currently living people will be recreated in such a simulation, and in some sense, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  30. Back to the Future: Curing Past Sufferings and S-Risks via Indexical Uncertainty.Alexey Turchin - manuscript
    The long unbearable sufferings in the past and agonies experienced in some future timelines in which a malevolent AI could torture people for some idiosyncratic reasons (s-risks) is a significant moral problem. Such events either already happened or will happen in causally disconnected regions of the multiverse and thus it seems unlikely that we can do anything about it. However, at least one pure theoretic way to cure past sufferings exists. If we assume that there is no stable substrate of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. Meaning of the wave function.Shan Gao - 2010
    We investigate the meaning of the wave function by analyzing the mass and charge density distributions of a quantum system. According to protective measurement, a charged quantum system has effective mass and charge density distributing in space, proportional to the square of the absolute value of its wave function. In a realistic interpretation, the wave function of a quantum system can be taken as a description of either a physical field or the ergodic motion of a particle. (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  32. Derivation of the Meaning of the Wave Function.Shan Gao - 2011
    We show that the physical meaning of the wave function can be derived based on the established parts of quantum mechanics. It turns out that the wave function represents the state of random discontinuous motion of particles, and its modulus square determines the probability density of the particles appearing in certain positions in space.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  33. The Wave Function and Its Evolution.Shan Gao - 2011
    The meaning of the wave function and its evolution are investigated. First, we argue that the wave function in quantum mechanics is a description of random discontinuous motion of particles, and the modulus square of the wave function gives the probability density of the particles being in certain locations in space. Next, we show that the linear non-relativistic evolution of the wave function of an isolated system obeys the free Schrödinger equation due to the requirements of spacetime translation invariance (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. Protective measurement and the de Broglie-Bohm theory.Shan Gao - manuscript
    We investigate the implications of protective measurement for de Broglie-Bohm theory, mainly focusing on the interpretation of the wave function. It has been argued that the de Broglie-Bohm theory gives the same predictions as quantum mechanics by means of quantum equilibrium hypothesis. However, this equivalence is based on the premise that the wave function, regarded as a Ψ-field, has no mass and charge density distributions. But this premise turns out to be wrong according to protective measurement; a charged (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. Entanglement and thermodynamics in general probabilistic theories.Giulio Chiribella & Carlo Maria Scandolo - 2015 - New Journal of Physics 17:103027.
    Entanglement is one of the most striking features of quantum mechanics, and yet it is not specifically quantum. More specific to quantum mechanics is the connection between entanglement and thermodynamics, which leads to an identification between entropies and measures of pure state entanglement. Here we search for the roots of this connection, investigating the relation between entanglement and thermodynamics in the framework of general probabilistic theories. We first address the question whether an entangled state can be transformed (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  36. Synchronicity, Mind, and Matter.Wlodzislaw Duch - 2002 - International Journal of Transpersonal Studies 21:153-168.
    Experiments with remote perception and Random Event Generators (REG) performed over the last decades show small but significant anomalous effects. Since these effects seem to be independent of spatial and temporal distance, they appear to be in disagreement with the standard scientific worldview. A very simple explanation of quantum mechanics is pre- sented, rejecting all unjustified claims about the world. A view of mind in agreement with cognitive neuroscience is introduced. It is argued that mind and consciousness are emer- (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  37. Cytoskeleton and Consciousness: An Evolutionary Based Review.Contzen Pereira - 2015 - Neuroquantology 13 (2).
    The fields of quantum biology and physics are now starting to unite to solve the mysteries associated with the field of evolutionary biology. One such question is the origination and propagation of consciousness which has always been ambiguous and in order to understand this concept, many theories have been proposed by several philosophers and scientists. This review paper agrees with the idea, that evolution is not a random process but hypothesizes, that its succession was managed by the expanding level (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  38. The Problem of Determinism - Freedom as Self-Determination.Dieter Wandschneider - 2010 - Psychotherapie Forum 18:100-107.
    There are arguments for determinism. Admittedly, this is opposed by the fact of everyday experience of autonomy. In the following, it is argued for the compatibility of determinism and autonomy. Taking up considerations of Donald MacKay, a fatalistic attitude can be refuted as false. Repeatedly, attempts have been made to defend the possibility of autonomy with reference to quantum physical indeterminacy. But its statistical randomness clearly misses the meaning of autonomy. What is decisive, on the other hand, is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. A Class of Examples Demonstrating That 'P ≠ NP' in the 'P Vs NP' Problem.Vasil Penchev - 2020 - Computing Methodology eJournal (Elsevier: SSRN) 3 (19):1-19.
    The CMI Millennium “P vs NP Problem” can be resolved e.g. if one shows at least one counterexample to the "P = NP" conjecture. A certain class of problems being such counterexamples will be formulated. This implies the rejection of the hypothesis that "P = NP" for any conditions satisfying the formulation of the problem. Thus, the solution "P is different from NP" of the problem in general is proved. The class of counterexamples can be interpreted as any quantum (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. Classification of Approaches to Technological Resurrection.Alexey Turchin & Chernyakov Maxim - manuscript
    Abstract. Death seems to be a permanent event, but there is no actual proof of its irreversibility. Here we list all known ways to resurrect the dead that do not contradict our current scientific understanding of the world. While no method is currently possible, many of those listed here may become feasible with future technological development, and it may even be possible to act now to increase their probability. The most well-known such approach to technological resurrection is cryonics. Another method (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  41. Propensities in a non-deterministic physics.N. Gisin - 1991 - Synthese 89 (2):287 - 297.
    Propensities are presented as a generalization of classical determinism. They describe a physical reality intermediary between Laplacian determinism and pure randomness, such as in quantum mechanics. They are characterized by the fact that their values are determined by the collection of all actual properties. It is argued that they do not satisfy Kolmogorov axioms; other axioms are proposed.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  42. Indeterminism in Physics, Classical Chaos and Bohmian Mechanics: Are Real Numbers Really Real?Nicolas Gisin - 2019 - Erkenntnis 86 (6):1469-1481.
    It is usual to identify initial conditions of classical dynamical systems with mathematical real numbers. However, almost all real numbers contain an infinite amount of information. I argue that a finite volume of space can’t contain more than a finite amount of information, hence that the mathematical real numbers are not physically relevant. Moreover, a better terminology for the so-called real numbers is “random numbers”, as their series of bits are truly random. I propose an alternative classical mechanics, which is (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  43. ALGEBRA OF FUNDAMENTAL MEASUREMENTS AS A BASIS OF DYNAMICS OF ECONOMIC SYSTEMS.Sergiy Melnyk - 2012 - arXiv.
    We propose an axiomatic approach to constructing the dynamics of systems, in which one the main elements 9e8 is the consciousness of a subject. The main axiom is the statements that the state of consciousness is completely determined by the results of measurements performed on it. In case of economic systems we propose to consider an offer of transaction as a fundamental measurement. Transactions with delayed choice, discussed in this paper, represent a logical generalization of incomplete transactions and allow for (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  44. A Model of Wavefunction Collapse in Discrete Space-Time.Shan Gao - 2006 - International Journal of Theoretical Physics 45 (10):1965-1979.
    We give a new argument supporting a gravitational role in quantum collapse. It is demonstrated that the discreteness of space-time, which results from the proper combination of quantum theory and general relativity, may inevitably result in the dynamical collapse of thewave function. Moreover, the minimum size of discrete space-time yields a plausible collapse criterion consistent with experiments. By assuming that the source to collapse the wave function is the inherent random motion of particles described by the wave function, (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  45. The c-aplpha Non Exclusion Principle and the vastly different internal electron and muon center of charge vacuum fluctuation geometry.Jim Wilson - forthcoming - Physics Essays.
    The electronic and muonic hydrogen energy levels are calculated very accurately [1] in Quantum Electrodynamics (QED) by coupling the Dirac Equation four vector (c ,mc2) current covariantly with the external electromagnetic (EM) field four vector in QED’s Interactive Representation (IR). The c -Non Exclusion Principle(c -NEP) states that, if one accepts c as the electron/muon velocity operator because of the very accurate hydrogen energy levels calculated, the one must also accept the resulting electron/muon internal spatial and time coordinate operators (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  46. Worlds in a Stochastic Universe: On the Emergence of World Histories in Minimal Bohmian Mechanics.Alexander Ehmann - 2020 - Dissertation, Lingnan University
    This thesis develops a detailed account of the emergence of for all practical purposes continuous, quasi-classical world histories from the discontinuous, stochastic micro dynamics of Minimal Bohmian Mechanics (MBM). MBM is a non-relativistic quantum theory. It results from excising the guiding equation from standard Bohmian Mechanics (BM) and reinterpreting the quantum equilibrium hypothesis as a stochastic guidance law for the random actualization of configurations of Bohmian particles. On MBM, there are no continuous trajectories linking up individual configurations. Instead, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  47. Chance and macroevolution.Roberta L. Millstein - 2000 - Philosophy of Science 67 (4):603-624.
    When philosophers of physics explore the nature of chance, they usually look to quantum mechanics. When philosophers of biology explore the nature of chance, they usually look to microevolutionary phenomena, such as mutation or random drift. What has been largely overlooked is the role of chance in macroevolution. The stochastic models of paleobiology employ conceptions of chance that are similar to those at the microevolutionary level, yet different from the conceptions of chance often associated with quantum mechanics and (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  48. The physics and metaphysics of Tychistic Bohmian Mechanics.Patrick Duerr & Alexander Ehmann - 2021 - Studies in History and Philosophy of Science Part A 90:168-183.
    The paper takes up Bell's “Everett theory” and develops it further. The resulting theory is about the system of all particles in the universe, each located in ordinary, 3-dimensional space. This many-particle system as a whole performs random jumps through 3N-dimensional configuration space – hence “Tychistic Bohmian Mechanics”. The distribution of its spontaneous localisations in configuration space is given by the Born Rule probability measure for the universal wavefunction. Contra Bell, the theory is argued to satisfy the minimal desiderata for (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  49.  64
    To Relativity, the maximum speed of information transmission is c, which is false.Alfonso Leon Guillen Gomez - manuscript
    According to a bits generation technique, that is, bits can only take a binary value of 0 in the absence of wave function collapse and 1 when wave function collapse occurs, that is, regardless of the value random in which the collapse of the wave function occurs that in the past caused the development of an alternative technique of classic bits to be renounced and remains currently an impossibility in normal science, through series of quantum entanglements, using BCD, EBCDIC (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. Creative Undecidability of Real-World Dynamics and the Emergent Time Hierarchy.Andrei P. Kirilyuk - 2020 - FQXi Essay Contest 2019-2020 “Undecidability, Uncomputability, and Unpredictability”.
    The unreduced solution to the arbitrary interaction problem, absent in the standard theory framework, reveals many equally real and mutually incompatible system configurations, or "realizations". This is the essence of universal dynamic undecidability, or multivaluedness, and the ensuing causal randomness (unpredictability), non-computability, irreversible time flow (evolution, emergence), and dynamic complexity of every real system, object, or process. This creative undecidability of real-world dynamics provides causal explanations for "quantum mysteries", relativity postulates, cosmological problems, and the huge efficiency of high-complexity (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 916