Contents
10 found
Order:
  1. A Concepção Aristotélica de Demonstração Geométrica a partir dos Segundos Analíticos.Rafael Cavalcanti de Souza - 2022 - Dissertation, University of Campinas
    Nos Segundos Analíticos I. 14, 79a16-21 Aristóteles afirma que as demonstrações matemáticas são expressas em silogismos de primeira figura. Apresento uma leitura da teoria da demonstração científica exposta nos Segundos Analíticos I (com maior ênfase nos capítulo 2-6) que seja consistente com o texto aristotélico e explique exemplos de demonstrações geométricas presentes no Corpus. Em termos gerais, defendo que a demonstração aristotélica é um procedimento de análise que explica um dado explanandum por meio da conversão de uma proposição previamente estabelecida. (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  2. Aristotle on Geometrical Potentialities.Naoya Iwata - 2021 - Journal of the History of Philosophy 59 (3):371-397.
    This paper examines Aristotle's discussion of the priority of actuality to potentiality in geometry at Metaphysics Θ9, 1051a21–33. Many scholars have assumed what I call the "geometrical construction" interpretation, according to which his point here concerns the relation between an inquirer's thinking and a geometrical figure. In contrast, I defend what I call the "geometrical analysis" interpretation, according to which it concerns the asymmetrical relation between geometrical propositions in which one is proved by means of the other. His argument as (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  3. Aristotle on the Purity of Forms in Metaphysics Z.10–11.Samuel Meister - 2020 - Ergo: An Open Access Journal of Philosophy 7:1-33.
    Aristotle analyses a large range of objects as composites of matter and form. But how exactly should we understand the relation between the matter and form of a composite? Some commentators have argued that forms themselves are somehow material, that is, forms are impure. Others have denied that claim and argued for the purity of forms. In this paper, I develop a new purist interpretation of Metaphysics Z.10-11, a text central to the debate, which I call 'hierarchical purism'. I argue (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   4 citations  
  4. Aristotle’s argument from universal mathematics against the existence of platonic forms.Pieter Sjoerd Hasper - 2019 - Manuscrito 42 (4):544-581.
    In Metaphysics M.2, 1077a9-14, Aristotle appears to argue against the existence of Platonic Forms on the basis of there being certain universal mathematical proofs which are about things that are ‘beyond’ the ordinary objects of mathematics and that cannot be identified with any of these. It is a very effective argument against Platonism, because it provides a counter-example to the core Platonic idea that there are Forms in order to serve as the object of scientific knowledge: the universal of which (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  5. The Now and the Relation between Motion and Time in Aristotle: A Systematic Reconstruction.Mark Sentesy - 2018 - Apeiron 51 (3):279-323.
    This paper reconstructs the relationship between the now, motion, and number in Aristotle to clarify the nature of the now, and, thereby, the relationship between motion and time. Although it is clear that for Aristotle motion, and, more generally, change, are prior to time, the nature of this priority is not clear. But if time is the number of motion, then the priority of motion can be grasped by examining his theory of number. This paper aims to show that, just (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  6. Why Can't Geometers Cut Themselves on the Acutely Angled Objects of Their Proofs? Aristotle on Shape as an Impure Power.Brad Berman - 2017 - Méthexis 29 (1):89-106.
    For Aristotle, the shape of a physical body is perceptible per se (DA II.6, 418a8-9). As I read his position, shape is thus a causal power, as a physical body can affect our sense organs simply in virtue of possessing it. But this invites a challenge. If shape is an intrinsically powerful property, and indeed an intrinsically perceptible one, then why are the objects of geometrical reasoning, as such, inert and imperceptible? I here address Aristotle’s answer to that problem, focusing (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  7. Aristotelian Mechanistic Explanation.Monte Johnson - 2017 - In Julius Rocca (ed.), Teleology in the Ancient World: Philosophical and Medical Approaches. New York, NY: Cambridge University Press. pp. 125-150.
    In some influential histories of ancient philosophy, teleological explanation and mechanistic explanation are assumed to be directly opposed and mutually exclusive alternatives. I contend that this assumption is deeply flawed, and distorts our understanding both of teleological and mechanistic explanation, and of the history of mechanistic philosophy. To prove this point, I shall provide an overview of the first systematic treatise on mechanics, the short and neglected work Mechanical Problems, written either by Aristotle or by a very early member of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  8. Aristotle on Mathematical Truth.Phil Corkum - 2012 - British Journal for the History of Philosophy 20 (6):1057-1076.
    Both literalism, the view that mathematical objects simply exist in the empirical world, and fictionalism, the view that mathematical objects do not exist but are rather harmless fictions, have been both ascribed to Aristotle. The ascription of literalism to Aristotle, however, commits Aristotle to the unattractive view that mathematics studies but a small fragment of the physical world; and there is evidence that Aristotle would deny the literalist position that mathematical objects are perceivable. The ascription of fictionalism also faces a (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   19 citations  
  9. Aristotle on Mathematical and Eidetic Number.Daniel P. Maher - 2011 - Hermathena 190:29-51.
    The article examines Greek philosopher Aristotle's understanding of mathematical numbers as pluralities of discreet units and the relations of unity and multiplicity. Topics discussed include Aristotle's view that a mathematical number has determinate properties, a contrast between Aristotle and French philosopher René Descartes in terms of their understanding of number and Aristotle's description of ways to understand eidetic numbers.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  10. Aristotelian Infinity.John Bowin - 2007 - Oxford Studies in Ancient Philosophy 32:233-250.
    Bowin begins with an apparent paradox about Aristotelian infinity: Aristotle clearly says that infinity exists only potentially and not actually. However, Aristotle appears to say two different things about the nature of that potential existence. On the one hand, he seems to say that the potentiality is like that of a process that might occur but isn't right now. Aristotle uses the Olympics as an example: they might be occurring, but they aren't just now. On the other hand, Aristotle says (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   7 citations