View topic on PhilPapers for more information
Related categories

17 found
Order:
More results on PhilPapers
  1. A Contradiction and P=NP Problem.Farzad Didehvar - manuscript
    Here, by introducing a version of “Unexpected hanging paradox” first we try to open a new way and a new explanation for paradoxes, similar to liar paradox. Also, we will show that we have a semantic situation which no syntactical logical system could support it. Finally, we propose a claim in Theory of Computation about the consistency of this Theory. One of the major claim is:Theory of Computation and Classical Logic leads us to a contradiction.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  2. By Considering Fuzzy Time, P=BPP (P*=BPP*).Farzad Didehvar - manuscript
    The reason ability of considering time as a fuzzy concept is demonstrated in [7],[8]. One of the major questions which arise here is the new definitions of Complexity Classes. In [1],[2],…,[11] we show why we should consider time a fuzzy concept. It is noticeable to mention that that there were many attempts to consider time as a Fuzzy concept, in Philosophy, Mathematics and later in Physics but mostly based on the personal intuition of the authors or as a style of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  3. Is Classical Mathematics Appropriate for Theory of Computation?Farzad Didehvar - manuscript
    Throughout this paper, we are trying to show how and why our Mathematical frame-work seems inappropriate to solve problems in Theory of Computation. More exactly, the concept of turning back in time in paradoxes causes inconsistency in modeling of the concept of Time in some semantic situations. As we see in the first chapter, by introducing a version of “Unexpected Hanging Paradox”,first we attempt to open a new explanation for some paradoxes. In the second step, by applying this paradox, it (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  4. Strengthening Weak Emergence.Nora Berenstain - forthcoming - Erkenntnis:1-18.
    Bedau's influential (1997) account analyzes weak emergence in terms of the non-derivability of a system’s macrostates from its microstates except by simulation. I offer an improved version of Bedau’s account of weak emergence in light of insights from information theory. Non-derivability alone does not guarantee that a system’s macrostates are weakly emergent. Rather, it is non-derivability plus the algorithmic compressibility of the system’s macrostates that makes them weakly emergent. I argue that the resulting information-theoretic picture provides a metaphysical account of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  5. Two Strategies to Infinity: Completeness and Incompleteness. The Completeness of Quantum Mechanics.Vasil Penchev - 2020 - High Performance Computing eJournal 12 (11):1-8.
    Two strategies to infinity are equally relevant for it is as universal and thus complete as open and thus incomplete. Quantum mechanics is forced to introduce infinity implicitly by Hilbert space, on which is founded its formalism. One can demonstrate that essential properties of quantum information, entanglement, and quantum computer originate directly from infinity once it is involved in quantum mechanics. Thus, thеse phenomena can be elucidated as both complete and incomplete, after which choice is the border between them. A (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  6. A Mathematical Model of Quantum Computer by Both Arithmetic and Set Theory.Vasil Penchev - 2020 - Information Theory and Research eJournal 1 (15):1-13.
    A practical viewpoint links reality, representation, and language to calculation by the concept of Turing (1936) machine being the mathematical model of our computers. After the Gödel incompleteness theorems (1931) or the insolvability of the so-called halting problem (Turing 1936; Church 1936) as to a classical machine of Turing, one of the simplest hypotheses is completeness to be suggested for two ones. That is consistent with the provability of completeness by means of two independent Peano arithmetics discussed in Section I. (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  7. Representation and Reality by Language: How to Make a Home Quantum Computer?Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (34):1-14.
    A set theory model of reality, representation and language based on the relation of completeness and incompleteness is explored. The problem of completeness of mathematics is linked to its counterpart in quantum mechanics. That model includes two Peano arithmetics or Turing machines independent of each other. The complex Hilbert space underlying quantum mechanics as the base of its mathematical formalism is interpreted as a generalization of Peano arithmetic: It is a doubled infinite set of doubled Peano arithmetics having a remarkable (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  8. Rational Analysis, Intractability, and the Prospects of ‘as If’-Explanations.Iris van Rooij, Cory Wright, Johan Kwisthout & Todd Wareham - 2018 - Synthese 195 (2):491-510.
    Despite their success in describing and predicting cognitive behavior, the plausibility of so-called ‘rational explanations’ is often contested on the grounds of computational intractability. Several cognitive scientists have argued that such intractability is an orthogonal pseudoproblem, however, since rational explanations account for the ‘why’ of cognition but are agnostic about the ‘how’. Their central premise is that humans do not actually perform the rational calculations posited by their models, but only act as if they do. Whether or not the problem (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   4 citations  
  9. Visions de la complexité. Le démon de Laplace dans tous ses états.Guillaume Deffuant, Arnaud Banos, David Chavalarias, Cyrille Bertelle, Nicolas Brodu, Annick Lesne, Jean-Pierre Müller, Édith Perrier, Franck Varenne & Pablo Jensen - 2015 - Natures Sciences Sociétés 23 (1):42-53.
    Nous distinguons trois visions de la complexité afin de clarifier les contours de la recherche dans ce domaine. Nous utilisons le démon de Laplace comme référence pour présenter ces visions. La vision 1 brise le rêve du démon de Laplace en identifiant des systèmes particuliers qui lui résistent en mathématiques, physique et informatique. La vision 2 propose une nouvelle version du rêve de Laplace fondée sur la disponibilité récente de grandes quantités de données et de nouvelles technologies de programmation, de (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark   2 citations  
  10. Отвъд машината на Тюринг: квантовият компютър.Vasil Penchev - 2014 - Sofia: BAS: ISSK (IPS).
    Quantum computer is considered as a generalization of Turing machine. The bits are substituted by qubits. In turn, a "qubit" is the generalization of "bit" referring to infinite sets or series. It extends the consept of calculation from finite processes and algorithms to infinite ones, impossible as to any Turing machines (such as our computers). However, the concept of quantum computer mets all paradoxes of infinity such as Gödel's incompletness theorems (1931), etc. A philosophical reflection on how quantum computer might (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  11. Complexity of Judgment Aggregation.Ulle Endriss, Umberto Grandi & Daniele Porello - 2012 - Journal of Artificial Intelligence Research 45:481--514.
    We analyse the computational complexity of three problems in judgment aggregation: (1) computing a collective judgment from a profile of individual judgments (the winner determination problem); (2) deciding whether a given agent can influence the outcome of a judgment aggregation procedure in her favour by reporting insincere judgments (the strategic manipulation problem); and (3) deciding whether a given judgment aggregation scenario is guaranteed to result in a logically consistent outcome, independently from what the judgments supplied by the individuals are (the (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   4 citations  
  12. Intractability and the Use of Heuristics in Psychological Explanations.Iris Rooij, Cory Wright & Todd Wareham - 2012 - Synthese 187 (2):471-487.
    Many cognitive scientists, having discovered that some computational-level characterization f of a cognitive capacity φ is intractable, invoke heuristics as algorithmic-level explanations of how cognizers compute f. We argue that such explanations are actually dysfunctional, and rebut five possible objections. We then propose computational-level theory revision as a principled and workable alternative.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   10 citations  
  13. Sense and Proof.Carlo Penco & Daniele Porello - 2010 - In M. D'agostino, G. Giorello, F. Laudisa, T. Pievani & C. Sinigaglia (eds.), New Essays in Logic and Philosophy of Science,. College Publicationss.
    In this paper we give some formal examples of ideas developed by Penco in two papers on the tension inside Frege's notion of sense (see Penco 2003). The paper attempts to compose the tension between semantic and cognitive aspects of sense, through the idea of sense as proof or procedure – not as an alternative to the idea of sense as truth condition, but as complementary to it (as it happens sometimes in the old tradition of procedural semantics).
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  14. The Epsilon Calculus and Herbrand Complexity.Georg Moser & Richard Zach - 2006 - Studia Logica 82 (1):133-155.
    Hilbert's ε-calculus is based on an extension of the language of predicate logic by a term-forming operator εx. Two fundamental results about the ε-calculus, the first and second epsilon theorem, play a rôle similar to that which the cut-elimination theorem plays in sequent calculus. In particular, Herbrand's Theorem is a consequence of the epsilon theorems. The paper investigates the epsilon theorems and the complexity of the elimination procedure underlying their proof, as well as the length of Herbrand disjunctions of existential (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   9 citations  
  15. The Incoherence of Heuristically Explaining Coherence.Iris van Rooij & Cory Wright - 2006 - In Ron Sun (ed.), Proceedings of the 28th Annual Conference of the Cognitive Science Society. Mahwah, NJ 07430, USA: pp. 2622.
    Advancement in cognitive science depends, in part, on doing some occasional ‘theoretical housekeeping’. We highlight some conceptual confusions lurking in an important attempt at explaining the human capacity for rational or coherent thought: Thagard & Verbeurgt’s computational-level model of humans’ capacity for making reasonable and truth-conducive abductive inferences (1998; Thagard, 2000). Thagard & Verbeurgt’s model assumes that humans make such inferences by computing a coherence function (f_coh), which takes as input representation networks and their pair-wise constraints and gives as output (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  16. Epistemic Virtues, Metavirtues, and Computational Complexity.Adam Morton - 2004 - Noûs 38 (3):481–502.
    I argue that considerations about computational complexity show that all finite agents need characteristics like those that have been called epistemic virtues. The necessity of these virtues follows in part from the nonexistence of shortcuts, or efficient ways of finding shortcuts, to cognitively expensive routines. It follows that agents must possess the capacities – metavirtues –of developing in advance the cognitive virtues they will need when time and memory are at a premium.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   10 citations  
  17. P≠NP, By Accepting to Make a Shift in the Theory (Time as a Fuzzy Concept) The Structure of a Theory (TC*, Theory of Computation Based on Fuzzy Time).Farzad Didehvar - manuscript
    In a series of articles we try to show the need of a novel Theory for Theory of Computation based on considering time as a Fuzzy concept. Time is a central concept In Physics. First we were forced to consider some changes and modifications in the Theories of Physics. In the second step and throughout this article we show the positive Impact of this modification on Theory of Computation and Complexity Theory to rebuild it in a more successful and fruitful (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation