Contents
14 found
Order:
  1. David Wolpert on impossibility, incompleteness, the liar paradox, the limits of computation, a non-quantum mechanical uncertainty principle and the universe as computer—the ultimate theorem in Turing Machine Theory.Michael Starks - manuscript
    I have read many recent discussions of the limits of computation and the universe as computer, hoping to find some comments on the amazing work of polymath physicist and decision theorist David Wolpert but have not found a single citation and so I present this very brief summary. Wolpert proved some stunning impossibility or incompleteness theorems (1992 to 2008-see arxiv.org) on the limits to inference (computation) that are so general they are independent of the device doing the computation, and even (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  2. Only Human: a book review of The Turing Guide. [REVIEW]Bjørn Kjos-Hanssen - forthcoming - Notices of the American Mathematical Society 66 (4).
    This is a review of The Turing Guide (2017), written by Jack Copeland, Jonathan Bowen, Mark Sprevak, Robin Wilson, and others. The review includes a new sociological approach to the problem of computability in physics.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  3. ¿Existen las Máquinas Aceleradas de Turing? Paradojas y posibilidades lógicas.Jose Alejandro Fernández Cuesta - 2023 - Techno Review. International Technology, Science and Society Review 13 (1):49.74.
    Las máquinas aceleradas de Turing (ATMs) son dispositivos capaces de ejecutar súper-tareas. Sin embargo, el simple ejercicio de definirlas ha generado varias paradojas. En el presente artículo se definirán las nociones de súper-tarea y ATM de manera exhaustiva y se aclarará qué debe entenderse en un contexto lógico-formal cuando se pregunta por la existencia de un objeto. A partir de la distinción entre posibilidades lógicas y físicas se disolverán las paradojas y se concluirá que las ATMs son posibles y existen (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  4. The Physics of God and the Quantum Gravity Theory of Everything.James Redford - 2021 - In The Physics of God and the Quantum Gravity Theory of Everything: And Other Selected Works. Chișinău, Moldova: Eliva Press. pp. 1-186.
    Analysis is given of the Omega Point cosmology, an extensively peer-reviewed proof (i.e., mathematical theorem) published in leading physics journals by professor of physics and mathematics Frank J. Tipler, which demonstrates that in order for the known laws of physics to be mutually consistent, the universe must diverge to infinite computational power as it collapses into a final cosmological singularity, termed the Omega Point. The theorem is an intrinsic component of the Feynman-DeWitt-Weinberg quantum gravity/Standard Model Theory of Everything (TOE) describing (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  5. A Mathematical Model of Quantum Computer by Both Arithmetic and Set Theory.Vasil Penchev - 2020 - Information Theory and Research eJournal 1 (15):1-13.
    A practical viewpoint links reality, representation, and language to calculation by the concept of Turing (1936) machine being the mathematical model of our computers. After the Gödel incompleteness theorems (1931) or the insolvability of the so-called halting problem (Turing 1936; Church 1936) as to a classical machine of Turing, one of the simplest hypotheses is completeness to be suggested for two ones. That is consistent with the provability of completeness by means of two independent Peano arithmetics discussed in Section I. (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  6. Representation and Reality by Language: How to make a home quantum computer?Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (34):1-14.
    A set theory model of reality, representation and language based on the relation of completeness and incompleteness is explored. The problem of completeness of mathematics is linked to its counterpart in quantum mechanics. That model includes two Peano arithmetics or Turing machines independent of each other. The complex Hilbert space underlying quantum mechanics as the base of its mathematical formalism is interpreted as a generalization of Peano arithmetic: It is a doubled infinite set of doubled Peano arithmetics having a remarkable (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  7. Two Strategies to Infinity: Completeness and Incompleteness. The Completeness of Quantum Mechanics.Vasil Penchev - 2020 - High Performance Computing eJournal 12 (11):1-8.
    Two strategies to infinity are equally relevant for it is as universal and thus complete as open and thus incomplete. Quantum mechanics is forced to introduce infinity implicitly by Hilbert space, on which is founded its formalism. One can demonstrate that essential properties of quantum information, entanglement, and quantum computer originate directly from infinity once it is involved in quantum mechanics. Thus, thеse phenomena can be elucidated as both complete and incomplete, after which choice is the border between them. A (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  8. A Class of Examples Demonstrating That 'P ≠ NP' in the 'P Vs NP' Problem.Vasil Penchev - 2020 - Computing Methodology eJournal (Elsevier: SSRN) 3 (19):1-19.
    The CMI Millennium “P vs NP Problem” can be resolved e.g. if one shows at least one counterexample to the "P = NP" conjecture. A certain class of problems being such counterexamples will be formulated. This implies the rejection of the hypothesis that "P = NP" for any conditions satisfying the formulation of the problem. Thus, the solution "P is different from NP" of the problem in general is proved. The class of counterexamples can be interpreted as any quantum superposition (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  9. Отвъд машината на Тюринг: квантовият компютър.Vasil Penchev - 2014 - Sofia: BAS: ISSK (IPS).
    Quantum computer is considered as a generalization of Turing machine. The bits are substituted by qubits. In turn, a "qubit" is the generalization of "bit" referring to infinite sets or series. It extends the consept of calculation from finite processes and algorithms to infinite ones, impossible as to any Turing machines (such as our computers). However, the concept of quantum computer mets all paradoxes of infinity such as Gödel's incompletness theorems (1931), etc. A philosophical reflection on how quantum computer might (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  10. From the Closed Classical Algorithmic Universe to an Open World of Algorithmic Constellations.Mark Burgin & Gordana Dodig-Crnkovic - 2013 - In Gordana Dodig-Crnkovic Raffaela Giovagnoli (ed.), Computing Nature. pp. 241--253.
    In this paper we analyze methodological and philosophical implications of algorithmic aspects of unconventional computation. At first, we describe how the classical algorithmic universe developed and analyze why it became closed in the conventional approach to computation. Then we explain how new models of algorithms turned the classical closed algorithmic universe into the open world of algorithmic constellations, allowing higher flexibility and expressive power, supporting constructivism and creativity in mathematical modeling. As Goedels undecidability theorems demonstrate, the closed algorithmic universe restricts (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  11. Ideal Negative Conceivability and the Halting Problem.Manolo Martínez - 2013 - Erkenntnis 78 (5):979-990.
    Our limited a priori-reasoning skills open a gap between our finding a proposition conceivable and its metaphysical possibility. A prominent strategy for closing this gap is the postulation of ideal conceivers, who suffer from no such limitations. In this paper I argue that, under many, maybe all, plausible unpackings of the notion of ideal conceiver, it is false that ideal negative conceivability entails possibility.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  12. On the Possibilities of Hypercomputing Supertasks.Vincent C. Müller - 2011 - Minds and Machines 21 (1):83-96.
    This paper investigates the view that digital hypercomputing is a good reason for rejection or re-interpretation of the Church-Turing thesis. After suggestion that such re-interpretation is historically problematic and often involves attack on a straw man (the ‘maximality thesis’), it discusses proposals for digital hypercomputing with Zeno-machines , i.e. computing machines that compute an infinite number of computing steps in finite time, thus performing supertasks. It argues that effective computing with Zeno-machines falls into a dilemma: either they are specified such (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  13. Effective Physical Processes and Active Information in Quantum Computing.Ignazio Licata - 2007 - Quantum Biosystems 1 (1):51-65.
    The recent debate on hypercomputation has raised new questions both on the computational abilities of quantum systems and the Church-Turing Thesis role in Physics.We propose here the idea of “effective physical process” as the essentially physical notion of computation. By using the Bohm and Hiley active information concept we analyze the differences between the standard form (quantum gates) and the non-standard one (adiabatic and morphogenetic) of Quantum Computing, and we point out how its Super-Turing potentialities derive from an incomputable information (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  14. On the impossibility of using analogue machines to calculate non-computable functions.Robin O. Gandy - manuscript - Translated by Aran Nayebi.
    A number of examples have been given of physical systems (both classical and quantum mechanical) which when provided with a (continuously variable) computable input will give a non-computable output. It has been suggested that these systems might allow one to design analogue machines which would calculate the values of some number-theoretic non-computable function. Analysis of the examples show that the suggestion is wrong. In Section 4 I claim that given a reasonable definition of analogue machine it will always be wrong. (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark