- A Contradiction and P=NP Problem.Farzad Didehvar - manuscriptdetails
- Is Classical Mathematics Appropriate for Theory of Computation?Farzad Didehvar - manuscriptdetails
- Strengthening Weak Emergence.Nora Berenstain - forthcoming - Erkenntnis:1-18.details
- Hilbert's 10th Problem for Solutions in a Subring of Q.Agnieszka Peszek & Apoloniusz Tyszka - 2019 - Scientific Annals of Computer Science 29 (1):101-111.details
- Review of 'The Outer Limits of Reason' by Noson Yanofsky 403p (2013) (Review Revised 2019).Michael Starks - 2019 - In Suicidal Utopian Delusions in the 21st Century -- Philosophy, Human Nature and the Collapse of Civilization -- Articles and Reviews 2006-2019 4th Edition Michael Starks. Las Vegas, NV USA: Reality Press. pp. 299-316.details
- Wolpert, Chaitin e Wittgenstein em impossibilidade, incompletude, o paradoxo do mentiroso, o teísmo, os limites da computação, um princípio de incerteza mecânica não quântica e o universo como computador — o teorema final na teoria da máquina de Turing (revisado 2019).Michael Richard Starks - 2019 - In Delírios Utópicos Suicidas no Século XXI Filosofia, Natureza Humana e o Colapso da Civilization- Artigos e Comentários 2006-2019 5ª edição. Las Vegas, NV USA: Reality Press. pp. 183-187.details
- Counterpossibles in Science: The Case of Relative Computability.Matthias Jenny - 2018 - Noûs 52 (3):530-560.details
- The Changing Practices of Proof in Mathematics: Gilles Dowek: Computation, Proof, Machine. Cambridge: Cambridge University Press, 2015. Translation of Les Métamorphoses du Calcul, Paris: Le Pommier, 2007. Translation From the French by Pierre Guillot and Marion Roman, $124.00HB, $40.99PB.Andrew Arana - 2017 - Metascience 26 (1):131-135.details
- Single-Tape and Multi-Tape Turing Machines Through the Lens of the Grossone Methodology.Yaroslav Sergeyev & Alfredo Garro - 2013 - Journal of Supercomputing 65 (2):645-663.details
- Laws of Form and the Force of Function: Variations on the Turing Test.Hajo Greif - 2012 - In Vincent C. Müller & Aladdin Ayesh (eds.), Revisiting Turing and His Test: Comprehensiveness, Qualia, and the Real World. AISB. pp. 60-64.details
- Intractability and the Use of Heuristics in Psychological Explanations.Iris Rooij, Cory Wright & Todd Wareham - 2012 - Synthese 187 (2):471-487.details
- A Paradox Related to the Turing Test.Samuel Alexander - 2011 - The Reasoner 5 (6):90-90.details
- On the Possibilities of Hypercomputing Supertasks.Vincent C. Müller - 2011 - Minds and Machines 21 (1):83-96.details
- A New Applied Approach for Executing Computations with Infinite and Infinitesimal Quantities.Yaroslav D. Sergeyev - 2008 - Informatica 19 (4):567-596.details
- Formulas for Computable and Non-Computable Functions.Samuel Alexander - 2006 - Rose-Hulman Undergraduate Mathematics Journal 7 (2).details
- Possible M-Diagrams of Models of Arithmetic.Andrew Arana - 2005 - In Stephen Simpson (ed.), Reverse Mathematics 2001.details
- Three Concepts of Decidability for General Subsets of Uncountable Spaces.Matthew W. Parker - 2003 - Theoretical Computer Science 351 (1):2-13.details
- The Theory of Computability Developed in Terms of Satisfaction.James Cain - 1999 - Notre Dame Journal of Formal Logic 40 (4):515-532.details
- The Decision Problem for Entanglement.Wayne C. Myrvold - 1997 - In Robert S. Cohen, Michael Horne & John Stachel (eds.), Potentiality, Entanglement, and Passion-at-a-Distance: Quantum Mechanical Studies for Abner Shimony. Kluwer Academic Publishers. pp. 177--190.details
- Automated Theorem Proving and Its Prospects. [REVIEW]Desmond Fearnley-Sander - 1995 - PSYCHE: An Interdisciplinary Journal of Research On Consciousness 2.details
- Computability in Quantum Mechanics.Wayne C. Myrvold - 1995 - In Werner De Pauli-Schimanovich, Eckehart Köhler & Friedrich Stadler (eds.), Vienna Circle Institute Yearbook. Kluwer Academic Publishers. pp. 33-46.details
- Recursive Predicates and Quantifiers.S. C. Kleene - 1943 - Transactions of the American Mathematical Society 53:41-73.details
- Are There a Set X⊆N and a Constructively Defined Integer N Such That (Card(X)≪Ω ⇒ X⊆(-∞,N]) ∧ ( a Constructively Defined Algorithm Decides X and There Are Many Elements of X) ∧ (the Infiniteness of X is Conjectured and Cannot Be Decided by Any Known Method) ∧ (X has the Simplest Definition Among Known Sets Y⊆N with the Same Set of Known Elements)?Agnieszka Kozdęba & Apoloniusz Tyszka - manuscriptdetails
- Defining a Decidability Decider for the Halting Problem.Pete Olcott - manuscriptdetails
- Halting Problem Proof From Finite Strings to Final States.Pete Olcott - manuscriptdetails
|
Off-campus access
Using PhilArchive from home?
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
|
RSS feed
|
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
|