View topic on PhilPapers for more information
Related categories

23 found
Order:
More results on PhilPapers
  1. added 2019-12-21
    Wolpert, Chaitin e Wittgenstein em impossibilidade, incompletude, o paradoxo do mentiroso, o teísmo, os limites da computação, um princípio de incerteza mecânica não quântica e o universo como computador — o teorema final na teoria da máquina de Turing (revisado 2019).Michael Richard Starks - 2019 - In Delírios Utópicos Suicidas no Século XXI Filosofia, Natureza Humana e o Colapso da Civilization- Artigos e Comentários 2006-2019 5ª edição. Las Vegas, NV USA: Reality Press. pp. 183-187.
    Eu li muitas discussões recentes sobre os limites da computação e do universo como computador, na esperança de encontrar alguns comentários sobre o trabalho surpreendente do físico polimatemático e teórico da decisão David Wolpert, mas não encontrei uma única citação e assim que eu apresento este muito breve Resumo. Wolpert provou alguma impossibilidade impressionante ou teoremas da incompletude (1992 a 2008-Veja arxiv dot org) nos limites à inferência (computação) que são tão gerais que são independentes do dispositivo que faz a (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  2. added 2019-04-15
    Hilbert's 10th Problem for Solutions in a Subring of Q.Agnieszka Peszek & Apoloniusz Tyszka - 2019 - Scientific Annals of Computer Science 29 (1):101-111.
    Yuri Matiyasevich's theorem states that the set of all Diophantine equations which have a solution in non-negative integers is not recursive. Craig Smoryński's theorem states that the set of all Diophantine equations which have at most finitely many solutions in non-negative integers is not recursively enumerable. Let R be a subring of Q with or without 1. By H_{10}(R), we denote the problem of whether there exists an algorithm which for any given Diophantine equation with integer coefficients, can decide whether (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  3. added 2019-04-14
    Is Classical Mathematics Appropriate for Theory of Computation?Farzad Didehvar - manuscript
    Throughout this paper, we are trying to show how and why our Mathematical frame-work seems inappropriate to solve problems in Theory of Computation. More exactly, the concept of turning back in time in paradoxes causes inconsistency in modeling of the concept of Time in some semantic situations. As we see in the first chapter, by introducing a version of “Unexpected Hanging Paradox”,first we attempt to open a new explanation for some paradoxes. In the second step, by applying this paradox, it (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  4. added 2019-02-24
    Review of 'The Outer Limits of Reason' by Noson Yanofsky 403p (2013) (Review Revised 2019).Michael Starks - 2019 - In Suicidal Utopian Delusions in the 21st Century -- Philosophy, Human Nature and the Collapse of Civilization -- Articles and Reviews 2006-2019 4th Edition Michael Starks. Las Vegas, NV USA: Reality Press. pp. 299-316.
    I give a detailed review of 'The Outer Limits of Reason' by Noson Yanofsky from a unified perspective of Wittgenstein and evolutionary psychology. I indicate that the difficulty with such issues as paradox in language and math, incompleteness, undecidability, computability, the brain and the universe as computers etc., all arise from the failure to look carefully at our use of language in the appropriate context and hence the failure to separate issues of scientific fact from issues of how language works. (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  5. added 2018-02-26
    Halting Problem Proof From Finite Strings to Final States.Pete Olcott - manuscript
    If there truly is a proof that shows that no universal halt decider exists on the basis that certain tuples: (H, Wm, W) are undecidable, then this very same proof (implemented as a Turing machine) could be used by H to reject some of its inputs. When-so-ever the hypothetical halt decider cannot derive a formal proof from its input strings and initial state to final states corresponding the mathematical logic functions of Halts(Wm, W) or Loops(Wm, W), halting undecidability has been (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  6. added 2018-02-20
    Defining a Decidability Decider for the Halting Problem.Pete Olcott - manuscript
    When we understand that every potential halt decider must derive a formal mathematical proof from its inputs to its final states previously undiscovered semantic details emerge. -/- When-so-ever the potential halt decider cannot derive a formal proof from its input strings to its final states of Halts or Loops, undecidability has been decided. -/- The formal proof involves tracing the sequence of state transitions of the input TMD as syntactic logical consequence inference steps in the formal language of Turing Machine (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  7. added 2017-10-17
    Open Problems in Computability Theory That Cannot Be Formally Stated.Apoloniusz Tyszka - manuscript
    Let \beta=(((24!)!)!)!, and let P_{n^2+1} denote the set of all primes of the form n^2+1. Let M denote the set of all positive multiples of elements of the set P_{n^2+1} \cap (\beta,\infty). The set X={0,...,\beta} \cup M satisfies the following conditions: (1) card(X) is greater than a huge positive integer and it is conjectured that X is infinite, (2) we do not know any algorithm deciding the finiteness of X, (3) a known and short algorithm for every n \in \mathbb{N} (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  8. added 2017-07-30
    Intractability and the Use of Heuristics in Psychological Explanations.Iris Rooij, Cory Wright & Todd Wareham - 2012 - Synthese 187 (2):471-487.
    Many cognitive scientists, having discovered that some computational-level characterization f of a cognitive capacity φ is intractable, invoke heuristics as algorithmic-level explanations of how cognizers compute f. We argue that such explanations are actually dysfunctional, and rebut five possible objections. We then propose computational-level theory revision as a principled and workable alternative.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   9 citations  
  9. added 2017-01-12
    The Changing Practices of Proof in Mathematics: Gilles Dowek: Computation, Proof, Machine. Cambridge: Cambridge University Press, 2015. Translation of Les Métamorphoses du Calcul, Paris: Le Pommier, 2007. Translation From the French by Pierre Guillot and Marion Roman, $124.00HB, $40.99PB.Andrew Arana - 2017 - Metascience 26 (1):131-135.
    Review of Dowek, Gilles, Computation, Proof, Machine, Cambridge University Press, Cambridge, 2015. Translation of Les Métamorphoses du calcul, Le Pommier, Paris, 2007. Translation from the French by Pierre Guillot and Marion Roman.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  10. added 2017-01-12
    Possible M-Diagrams of Models of Arithmetic.Andrew Arana - 2005 - In Stephen Simpson (ed.), Reverse Mathematics 2001.
    In this paper I begin by extending two results of Solovay; the first characterizes the possible Turing degrees of models of True Arithmetic (TA), the complete first-order theory of the standard model of PA, while the second characterizes the possible Turing degrees of arbitrary completions of P. I extend these two results to characterize the possible Turing degrees of m-diagrams of models of TA and of arbitrary complete extensions of PA. I next give a construction showing that the conditions Solovay (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  11. added 2016-07-07
    Counterpossibles in Science: The Case of Relative Computability.Matthias Jenny - 2018 - Noûs 52 (3):530-560.
    I develop a theory of counterfactuals about relative computability, i.e. counterfactuals such as 'If the validity problem were algorithmically decidable, then the halting problem would also be algorithmically decidable,' which is true, and 'If the validity problem were algorithmically decidable, then arithmetical truth would also be algorithmically decidable,' which is false. These counterfactuals are counterpossibles, i.e. they have metaphysically impossible antecedents. They thus pose a challenge to the orthodoxy about counterfactuals, which would treat them as uniformly true. What’s more, I (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   9 citations  
  12. added 2016-05-12
    Automated Theorem Proving and Its Prospects. [REVIEW]Desmond Fearnley-Sander - 1995 - PSYCHE: An Interdisciplinary Journal of Research On Consciousness 2.
    REVIEW OF: Automated Development of Fundamental Mathematical Theories by Art Quaife. (1992: Kluwer Academic Publishers) 271pp. Using the theorem prover OTTER Art Quaife has proved four hundred theorems of von Neumann-Bernays-Gödel set theory; twelve hundred theorems and definitions of elementary number theory; dozens of Euclidean geometry theorems; and Gödel's incompleteness theorems. It is an impressive achievement. To gauge its significance and to see what prospects it offers this review looks closely at the book and the proofs it presents.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  13. added 2015-10-12
    On the Possibilities of Hypercomputing Supertasks.Vincent C. Müller - 2011 - Minds and Machines 21 (1):83-96.
    This paper investigates the view that digital hypercomputing is a good reason for rejection or re-interpretation of the Church-Turing thesis. After suggestion that such re-interpretation is historically problematic and often involves attack on a straw man (the ‘maximality thesis’), it discusses proposals for digital hypercomputing with Zeno-machines , i.e. computing machines that compute an infinite number of computing steps in finite time, thus performing supertasks. It argues that effective computing with Zeno-machines falls into a dilemma: either they are specified such (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  14. added 2015-09-29
    A Contradiction and P=NP Problem.Farzad Didehvar - manuscript
    Here, by introducing a version of “Unexpected hanging paradox” first we try to open a new way and a new explanation for paradoxes, similar to liar paradox. Also, we will show that we have a semantic situation which no syntactical logical system could support it. Finally, we propose a claim in Theory of Computation about the consistency of this Theory. One of the major claim is:Theory of Computation and Classical Logic leads us to a contradiction.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  15. added 2015-02-05
    Laws of Form and the Force of Function: Variations on the Turing Test.Hajo Greif - 2012 - In Vincent C. Müller & Aladdin Ayesh (eds.), Revisiting Turing and His Test: Comprehensiveness, Qualia, and the Real World. AISB. pp. 60-64.
    This paper commences from the critical observation that the Turing Test (TT) might not be best read as providing a definition or a genuine test of intelligence by proxy of a simulation of conversational behaviour. Firstly, the idea of a machine producing likenesses of this kind served a different purpose in Turing, namely providing a demonstrative simulation to elucidate the force and scope of his computational method, whose primary theoretical import lies within the realm of mathematics rather than cognitive modelling. (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  16. added 2014-03-28
    The Theory of Computability Developed in Terms of Satisfaction.James Cain - 1999 - Notre Dame Journal of Formal Logic 40 (4):515-532.
    The notion of computability is developed through the study of the behavior of a set of languages interpreted over the natural numbers which contain their own fully defined satisfaction predicate and whose only other vocabulary is limited to "0", individual variables, the successor function, the identity relation and operators for disjunction, conjunction, and existential quantification.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  17. added 2013-12-09
    Single-Tape and Multi-Tape Turing Machines Through the Lens of the Grossone Methodology.Yaroslav Sergeyev & Alfredo Garro - 2013 - Journal of Supercomputing 65 (2):645-663.
    The paper investigates how the mathematical languages used to describe and to observe automatic computations influence the accuracy of the obtained results. In particular, we focus our attention on Single and Multi-tape Turing machines which are described and observed through the lens of a new mathematical language which is strongly based on three methodological ideas borrowed from Physics and applied to Mathematics, namely: the distinction between the object (we speak here about a mathematical object) of an observation and the instrument (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  18. added 2013-08-28
    The Decision Problem for Entanglement.Wayne C. Myrvold - 1997 - In Robert S. Cohen, Michael Horne & John Stachel (eds.), Potentiality, Entanglement, and Passion-at-a-Distance: Quantum Mechanical Studies for Abner Shimony. Kluwer Academic Publishers. pp. 177--190.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  19. added 2013-08-28
    Computability in Quantum Mechanics.Wayne C. Myrvold - 1995 - In Werner De Pauli-Schimanovich, Eckehart Köhler & Friedrich Stadler (eds.), Vienna Circle Institute Yearbook. Kluwer Academic Publishers. pp. 33-46.
    In this paper, the issues of computability and constructivity in the mathematics of physics are discussed. The sorts of questions to be addressed are those which might be expressed, roughly, as: Are the mathematical foundations of our current theories unavoidably non-constructive: or, Are the laws of physics computable?
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  20. added 2013-03-14
    Three Concepts of Decidability for General Subsets of Uncountable Spaces.Matthew W. Parker - 2003 - Theoretical Computer Science 351 (1):2-13.
    There is no uniquely standard concept of an effectively decidable set of real numbers or real n-tuples. Here we consider three notions: decidability up to measure zero [M.W. Parker, Undecidability in Rn: Riddled basins, the KAM tori, and the stability of the solar system, Phil. Sci. 70(2) (2003) 359–382], which we abbreviate d.m.z.; recursive approximability [or r.a.; K.-I. Ko, Complexity Theory of Real Functions, Birkhäuser, Boston, 1991]; and decidability ignoring boundaries [d.i.b.; W.C. Myrvold, The decision problem for entanglement, in: R.S. (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  21. added 2011-05-29
    A Paradox Related to the Turing Test.Samuel Alexander - 2011 - The Reasoner 5 (6):90-90.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  22. added 2011-05-19
    Formulas for Computable and Non-Computable Functions.Samuel Alexander - 2006 - Rose-Hulman Undergraduate Mathematics Journal 7 (2).
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  23. added 2011-02-27
    A New Applied Approach for Executing Computations with Infinite and Infinitesimal Quantities.Yaroslav D. Sergeyev - 2008 - Informatica 19 (4):567-596.
    A new computational methodology for executing calculations with infinite and infinitesimal quantities is described in this paper. It is based on the principle ‘The part is less than the whole’ introduced by Ancient Greeks and applied to all numbers (finite, infinite, and infinitesimal) and to all sets and processes (finite and infinite). It is shown that it becomes possible to write down finite, infinite, and infinitesimal numbers by a finite number of symbols as particular cases of a unique framework. The (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark   3 citations