Contents
20 found
Order:
  1. On the (Im)possibility of Scalable Quantum Computing.Andrew Knight - manuscript
    The potential for scalable quantum computing depends on the viability of fault tolerance and quantum error correction, by which the entropy of environmental noise is removed during a quantum computation to maintain the physical reversibility of the computer’s logical qubits. However, the theory underlying quantum error correction applies a linguistic double standard to the words “noise” and “measurement” by treating environmental interactions during a quantum computation as inherently reversible, and environmental interactions at the end of a quantum computation as irreversible (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  2. Schroedinger's Register: Foundational Issues and Physical Realization.Stephen Pink & Stanley Martens - manuscript
    This work-in-progress paper consists of four points which relate to the foundations and physical realization of quantum computing. The first point is that the qubit cannot be taken as the basic unit for quantum computing, because not every superposition of bit-strings of length n can be factored into a string of n-qubits. The second point is that the “No-cloning” theorem does not apply to the copying of one quantum register into another register, because the mathematical representation of this copying is (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  3. Democratization of quantum technologies.Zeki Seskir, Steven Umbrello, Pieter E. Vermaas & Christopher Coenen - 2023 - Quantum Science and Technology 8:024005.
    As quantum technologies (QT) advance, their potential impact on and relation with society has been developing into an important issue for exploration. In this paper, we investigate the topic of democratization in the context of QT, particularly quantum computing. The paper contains three main sections. First, we briefly introduce different theories of democracy (participatory, representative, and deliberative) and how the concept of democratization can be formulated with respect to whether democracy is taken as an intrinsic or instrumental value. Second, we (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  4. On the Role of Inconsistency in Quantum Foundational Debate and Hilbert Space Formulation.Debajyoti Gangopadhyay - 2022 - Quanta 11 (Number 1):28-41.
    This article is intended mainly to develop an expository outline of an inherently inconsistent reasoning in the development of quantum mechanics during 1920s, which set up the background of proposing different variants of quantum logic a bit later. We will discuss here two of the quantum logical variants with reference to Hilbert space formulation, based on the proposals of Bohr and Schrödinger as a result of addressing the same kernel of difficulties and will give a relative comparison. Our presentation is (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  5. Machine-Believers Learning Faiths & Knowledges: The Gospel According to GPT.Virgil W. Brower - 2021 - Internationales Jahrbuch Für Medienphilosophie 7 (1):97-121.
    One is occasionally reminded of Foucault's proclamation in a 1970 interview that "perhaps, one day this century will be known as Deleuzian." Less often is one compelled to update and restart with a supplementary counter-proclamation of the mathematician, David Lindley: "the twenty-first century would be a Bayesian era..." The verb tenses of both are conspicuous. // To critically attend to what is today often feared and demonized, but also revered, deployed, and commonly referred to as algorithm(s), one cannot avoid the (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  6. What Have Google’s Random Quantum Circuit Simulation Experiments Demonstrated about Quantum Supremacy?Jack K. Horner & John Symons - 2021 - In Hamid R. Arabnia, Leonidas Deligiannidis, Fernando G. Tinetti & Quoc-Nam Tran (eds.), Advances in Software Engineering, Education, and E-Learning: Proceedings From Fecs'20, Fcs'20, Serp'20, and Eee'20. Springer.
    Quantum computing is of high interest because it promises to perform at least some kinds of computations much faster than classical computers. Arute et al. 2019 (informally, “the Google Quantum Team”) report the results of experiments that purport to demonstrate “quantum supremacy” – the claim that the performance of some quantum computers is better than that of classical computers on some problems. Do these results close the debate over quantum supremacy? We argue that they do not. In the following, we (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  7. Universal Logic in terms of Quantum Information.Vasil Penchev - 2020 - Metaphilosophy eJournal (Elsevier: SSRN) 12 (9):1-5.
    Any logic is represented as a certain collection of well-orderings admitting or not some algebraic structure such as a generalized lattice. Then universal logic should refer to the class of all subclasses of all well-orderings. One can construct a mapping between Hilbert space and the class of all logics. Thus there exists a correspondence between universal logic and the world if the latter is considered a collection of wave functions, as which the points in Hilbert space can be interpreted. The (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  8. A Quantum Computer in a 'Chinese Room'.Vasil Penchev - 2020 - Mechanical Engineering eJournal (Elsevier: SSRN) 3 (155):1-8.
    Pattern recognition is represented as the limit, to which an infinite Turing process converges. A Turing machine, in which the bits are substituted with qubits, is introduced. That quantum Turing machine can recognize two complementary patterns in any data. That ability of universal pattern recognition is interpreted as an intellect featuring any quantum computer. The property is valid only within a quantum computer: To utilize it, the observer should be sited inside it. Being outside it, the observer would obtain quite (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  9. Natural Argument by a Quantum Computer.Vasil Penchev - 2020 - Computing Methodology eJournal (Elsevier: SSRN) 3 (30):1-8.
    Natural argument is represented as the limit, to which an infinite Turing process converges. A Turing machine, in which the bits are substituted with qubits, is introduced. That quantum Turing machine can recognize two complementary natural arguments in any data. That ability of natural argument is interpreted as an intellect featuring any quantum computer. The property is valid only within a quantum computer: To utilize it, the observer should be sited inside it. Being outside it, the observer would obtain quite (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  10. Quantum Computer: Quantum Model and Reality.Vasil Penchev - 2020 - Epistemology eJournal (Elsevier: SSRN) 13 (17):1-7.
    Any computer can create a model of reality. The hypothesis that quantum computer can generate such a model designated as quantum, which coincides with the modeled reality, is discussed. Its reasons are the theorems about the absence of “hidden variables” in quantum mechanics. The quantum modeling requires the axiom of choice. The following conclusions are deduced from the hypothesis. A quantum model unlike a classical model can coincide with reality. Reality can be interpreted as a quantum computer. The physical processes (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  11. Two Strategies to Infinity: Completeness and Incompleteness. The Completeness of Quantum Mechanics.Vasil Penchev - 2020 - High Performance Computing eJournal 12 (11):1-8.
    Two strategies to infinity are equally relevant for it is as universal and thus complete as open and thus incomplete. Quantum mechanics is forced to introduce infinity implicitly by Hilbert space, on which is founded its formalism. One can demonstrate that essential properties of quantum information, entanglement, and quantum computer originate directly from infinity once it is involved in quantum mechanics. Thus, thеse phenomena can be elucidated as both complete and incomplete, after which choice is the border between them. A (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  12. Progress in post-quantum theory.Jack Sarfatti - 2017 - AIP Conference Proceedings 1841 (1).
    David Bohm, in his "causal theory", made the correct Hegelian synthesis of Einstein's thesis that there is a "there" there, and Bohr's antithesis of "thinglessness" (Nick Herbert’s term). Einstein was a materialist and Bohr was an idealist. Bohm showed that quantum reality has both. This is “physical dualism” (my term). Physical dualism may be a low energy approximation to a deeper monism of cosmic consciousness called "the super-implicate order" (Bohm and Hiley’s term), “pregeometry” (Wheeler’s term), “substratum” (Dirac’s term), “funda-MENTAL space” (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  13. A Formal Model of Metaphor in Frame Semantics.Vasil Penchev - 2015 - In Proceedings of the 41st Annual Convention of the Society for the Study of Artificial Intelligence and the Simulation of Behaviour. New York: Curran Associates, Inc.. pp. 187-194.
    A formal model of metaphor is introduced. It models metaphor, first, as an interaction of “frames” according to the frame semantics, and then, as a wave function in Hilbert space. The practical way for a probability distribution and a corresponding wave function to be assigned to a given metaphor in a given language is considered. A series of formal definitions is deduced from this for: “representation”, “reality”, “language”, “ontology”, etc. All are based on Hilbert space. A few statements about a (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  14. Effective Physical Processes and Active Information in Quantum Computing.Ignazio Licata - 2007 - Quantum Biosystems 1 (1):51-65.
    The recent debate on hypercomputation has raised new questions both on the computational abilities of quantum systems and the Church-Turing Thesis role in Physics.We propose here the idea of “effective physical process” as the essentially physical notion of computation. By using the Bohm and Hiley active information concept we analyze the differences between the standard form (quantum gates) and the non-standard one (adiabatic and morphogenetic) of Quantum Computing, and we point out how its Super-Turing potentialities derive from an incomputable information (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  15. Consciousness as computation: A defense of strong AI based on quantum-state functionalism.R. Michael Perry - 2006 - In Charles Tandy (ed.), Death and Anti-Death, Volume 4: Twenty Years After De Beauvoir, Thirty Years After Heidegger. Palo Alto: Ria University Press.
    The viewpoint that consciousness, including feeling, could be fully expressed by a computational device is known as strong artificial intelligence or strong AI. Here I offer a defense of strong AI based on machine-state functionalism at the quantum level, or quantum-state functionalism. I consider arguments against strong AI, then summarize some counterarguments I find compelling, including Torkel Franzén’s work which challenges Roger Penrose’s claim, based on Gödel incompleteness, that mathematicians have nonalgorithmic levels of “certainty.” Some consequences of strong AI are (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  16. Онтология на квантовата информация.Vasil Penchev - 2005 - Philosophical Alternatives 14 (2):110-116.
    The article is devoted to quantum information (including its subdomains, namely: quantum communication, quantum computer, quantum cryptography), and its philosophical meaning. Paradox EPR, Bell’s inequality, phenomena of teleportation are discussed of a philosophical point of view. Quantum mechanical nonlocal correlations are interpreted as topological inseparabilities. Information is considered both as a fundamental physical quantity and as a philosophical category.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  17. Квантовият компютър: квантовите ординали и типовете алгоритмична неразрешимост.Vasil Penchev - 2005 - Philosophical Alternatives 14 (6):59-71.
    A definition of quantum computer is supposed: as a countable set of Turing machines on the ground of: quantum parallelism, reversibility, entanglement. Qubit is the set of all the i–th binary location cells transforming in parallel by unitary matrices. The Church thesis is suggested in the form relevat to quantum computer. The notion of the non–finite (but not infinite) potency of a set is introduced .
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  18. P≠NP, By accepting to make a shift in the Theory (Time as a fuzzy concept) The Structure of a Theory (TC*, Theory of Computation based on Fuzzy time).Farzad Didehvar - manuscript
    In a series of articles we try to show the need of a novel Theory for Theory of Computation based on considering time as a Fuzzy concept. Time is a central concept In Physics. First we were forced to consider some changes and modifications in the Theories of Physics. In the second step and throughout this article we show the positive Impact of this modification on Theory of Computation and Complexity Theory to rebuild it in a more successful and fruitful (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  19. On the impossibility of using analogue machines to calculate non-computable functions.Robin O. Gandy - manuscript - Translated by Aran Nayebi.
    A number of examples have been given of physical systems (both classical and quantum mechanical) which when provided with a (continuously variable) computable input will give a non-computable output. It has been suggested that these systems might allow one to design analogue machines which would calculate the values of some number-theoretic non-computable function. Analysis of the examples show that the suggestion is wrong. In Section 4 I claim that given a reasonable definition of analogue machine it will always be wrong. (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  20. The Universal Lattice.Rowan Grigg - unknown
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark