View topic on PhilPapers for more information
Related categories

8 found
Order:
More results on PhilPapers
  1. added 2020-07-15
    Quantum Computer: Quantum Model and Reality.Vasil Penchev - 2020 - Machine Learning eJournal 3 (76):1-7.
    Any computer can create a model of reality. The hypothesis that quantum computer can generate such a model designated as quantum, which coincides with the modeled reality, is discussed. Its reasons are the theorems about the absence of “hidden variables” in quantum mechanics. The quantum modeling requires the axiom of choice. The following conclusions are deduced from the hypothesis. A quantum model unlike a classical model can coincide with reality. Reality can be interpreted as a quantum computer. The physical processes (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  2. added 2020-07-14
    Two Strategies to Infinity: Completeness and Incompleteness. The Completeness of Quantum Mechanics.Vasil Penchev - 2020 - High Performance Computing eJournal 3 (13):1-8.
    Two strategies to infinity are equally relevant for it is as universal and thus complete as open and thus incomplete. Quantum mechanics is forced to introduce infinity implicitly by Hilbert space, on which is founded its formalism. One can demonstrate that essential properties of quantum information, entanglement, and quantum computer originate directly from infinity once it is involved in quantum mechanics. Thus, thеse phenomena can be elucidated as both complete and incomplete, after which choice is the border between them. A (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  3. added 2020-05-31
    A Formal Model of Metaphor in Frame Semantics.Vasil Penchev - 2016 - In Proceedings of the 41st Annual Convention of the Society for the Study of Artificial Intelligence and the Simulation of Behaviour. New York: Curran Associates, Inc.. pp. 187-194.
    A formal model of metaphor is introduced. It models metaphor, first, as an interaction of “frames” according to the frame semantics, and then, as a wave function in Hilbert space. The practical way for a probability distribution and a corresponding wave function to be assigned to a given metaphor in a given language is considered. A series of formal definitions is deduced from this for: “representation”, “reality”, “language”, “ontology”, etc. All are based on Hilbert space. A few statements about a (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  4. added 2014-11-29
    Progress in Post-Quantum Theory.Jack Sarfatti - 2017 - AIP Conference Proceedings 1841 (1).
    David Bohm, in his "causal theory", made the correct Hegelian synthesis of Einstein's thesis that there is a "there" there, and Bohr's antithesis of "thinglessness" (Nick Herbert’s term). Einstein was a materialist and Bohr was an idealist. Bohm showed that quantum reality has both. This is “physical dualism” (my term). Physical dualism may be a low energy approximation to a deeper monism of cosmic consciousness called "the super-implicate order" (Bohm and Hiley’s term), “pregeometry” (Wheeler’s term), “substratum” (Dirac’s term), “funda-MENTAL space” (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  5. added 2014-09-12
    Consciousness as Computation: A Defense of Strong AI Based on Quantum-State Functionalism.R. Michael Perry - 2006 - In Charles Tandy (ed.), Death and Anti-Death, Volume 4: Twenty Years After De Beauvoir, Thirty Years After Heidegger. Palo Alto: Ria University Press.
    The viewpoint that consciousness, including feeling, could be fully expressed by a computational device is known as strong artificial intelligence or strong AI. Here I offer a defense of strong AI based on machine-state functionalism at the quantum level, or quantum-state functionalism. I consider arguments against strong AI, then summarize some counterarguments I find compelling, including Torkel Franzén’s work which challenges Roger Penrose’s claim, based on Gödel incompleteness, that mathematicians have nonalgorithmic levels of “certainty.” Some consequences of strong AI are (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  6. added 2013-06-11
    Effective Physical Processes and Active Information in Quantum Computing.Ignazio Licata - 2007 - Quantum Biosystems 1 (1):51-65.
    The recent debate on hypercomputation has raised new questions both on the computational abilities of quantum systems and the Church-Turing Thesis role in Physics.We propose here the idea of “effective physical process” as the essentially physical notion of computation. By using the Bohm and Hiley active information concept we analyze the differences between the standard form (quantum gates) and the non-standard one (adiabatic and morphogenetic) of Quantum Computing, and we point out how its Super-Turing potentialities derive from an incomputable information (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  7. added 2013-05-29
    Schroedinger's Register: Foundational Issues and Physical Realization.Stephen Pink & Stanley Martens - manuscript
    This work-in-progress paper consists of four points which relate to the foundations and physical realization of quantum computing. The first point is that the qubit cannot be taken as the basic unit for quantum computing, because not every superposition of bit-strings of length n can be factored into a string of n-qubits. The second point is that the “No-cloning” theorem does not apply to the copying of one quantum register into another register, because the mathematical representation of this copying is (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  8. added 2010-02-01
    The Universal Lattice.Rowan Grigg - unknown
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark