Switch to: References

Add citations

You must login to add citations.
  1. Scientific Realism Made Effective.Porter Williams - 2019 - British Journal for the Philosophy of Science 70 (1):209-237.
    I argue that a common philosophical approach to the interpretation of physical theories—particularly quantum field theories—has led philosophers astray. It has driven many to declare the quantum field theories employed by practicing physicists, so-called ‘effective field theories’, to be unfit for philosophical interpretation. In particular, such theories have been deemed unable to support a realist interpretation. I argue that these claims are mistaken: attending to the manner in which these theories are employed in physical practice, I show that interpreting effective (...)
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Are Newtonian Gravitation and Geometrized Newtonian Gravitation Theoretically Equivalent?James Owen Weatherall - 2016 - Erkenntnis 81 (5):1073-1091.
    I argue that a criterion of theoretical equivalence due to Glymour :227–251, 1977) does not capture an important sense in which two theories may be equivalent. I then motivate and state an alternative criterion that does capture the sense of equivalence I have in mind. The principal claim of the paper is that relative to this second criterion, the answer to the question posed in the title is “yes”, at least on one natural understanding of Newtonian gravitation.
    Download  
     
    Export citation  
     
    Bookmark   78 citations  
  • Holism and structuralism in U(1) gauge theory.Holger Lyre - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 35 (4):643-670.
    After decades of neglect philosophers of physics have discovered gauge theories--arguably the paradigm of modern field physics--as a genuine topic for foundational and philosophical research. Incidentally, in the last couple of years interest from the philosophy of physics in structural realism--in the eyes of its proponents the best suited realist position towards modern physics--has also raised. This paper tries to connect both topics and aims to show that structural realism gains further credence from an ontological analysis of gauge theories--in particular (...)
    Download  
     
    Export citation  
     
    Bookmark   112 citations  
  • Against pointillisme about mechanics.Jeremy Butterfield - 2006 - British Journal for the Philosophy of Science 57 (4):709-753.
    This paper forms part of a wider campaign: to deny pointillisme, the doctrine that a physical theory's fundamental quantities are defined at points of space or of spacetime, and represent intrinsic properties of such points or point-sized objects located there; so that properties of spatial or spatiotemporal regions and their material contents are determined by the point-by-point facts. More specifically, this paper argues against pointillisme about the concept of velocity in classical mechanics; especially against proposals by Tooley, Robinson and Lewis. (...)
    Download  
     
    Export citation  
     
    Bookmark   92 citations  
  • Grounding at a distance.Sam Baron, Kristie Miller & Jonathan Tallant - 2020 - Philosophical Studies 177 (11):3373-3390.
    What distinguishes causation from grounding? One suggestion is that causation, but not grounding, occurs over time. Recently, however, counterexamples to this simple temporal criterion have been offered. In this paper, we situate the temporal criterion within a broader framework that focuses on two aspects: locational overlapping in space and time and the presence of intermediaries in space and time. We consider, and reject, the idea that the difference between grounding and causation is that grounding can occur without intermediaries. We go (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Categories and the Foundations of Classical Field Theories.James Owen Weatherall - 2017 - In Elaine M. Landry, Categories for the Working Philosopher. Oxford, England: Oxford University Press.
    I review some recent work on applications of category theory to questions concerning theoretical structure and theoretical equivalence of classical field theories, including Newtonian gravitation, general relativity, and Yang-Mills theories.
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Are gauge symmetry transformations observable?Katherine Brading & Harvey R. Brown - 2004 - British Journal for the Philosophy of Science 55 (4):645-665.
    In a recent paper in this journal, Kosso ([2000]) discussed the observational status of continuous symmetries of physics. While we are in broad agreement with his approach, we disagree with his analysis. In the discussion of the status of gauge symmetry, a set of examples offered by 't Hooft ([1980]) has influenced several philosophers, including Kosso; in all cases the interpretation of the examples is mistaken. In this paper, we present our preferred approach to the empirical significance of symmetries, re-analysing (...)
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • Fiber bundles, Yang–Mills theory, and general relativity.James Owen Weatherall - 2016 - Synthese 193 (8).
    I articulate and discuss a geometrical interpretation of Yang–Mills theory. Analogies and disanalogies between Yang–Mills theory and general relativity are also considered.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Isolated systems and their symmetries, part I: General framework and particle-mechanics examples.David Wallace - 2022 - Studies in History and Philosophy of Science Part A 92 (C):239-248.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Presentism and quantum gravity.Bradley Monton - 2006 - In Dennis Geert Bernardus Johan Dieks, Ontology of Spacetime. Boston: Elsevier.
    There is a philosophical tradition of arguing against presentism, the thesis that only presently existing things exist, on the basis of its incompatibility with fundamental physics. I grant that presentism is incompatible with special and general relativity, but argue that presentism is not incompatible with quantum gravity, because there are some theories of quantum gravity that utilize a fixed foliation of spacetime. I reply to various objections to this defense of presentism, and point out a flaw in Gödel's modal argument (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Infinite idealizations in physics.Elay Shech - 2018 - Philosophy Compass 13 (9):e12514.
    In this essay, I provide an overview of the debate on infinite and essential idealizations in physics. I will first present two ostensible examples: phase transitions and the Aharonov– Bohm effect. Then, I will describe the literature on the topic as a debate between two positions: Essentialists claim that idealizations are essential or indispensable for scientific accounts of certain physical phenomena, while dispensabilists maintain that idealizations are dispensable from mature scientific theory. I will also identify some attempts at finding a (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Symmetry and gauge freedom.Gordon Belot - 2002 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 34 (2):189-225.
    The classical field theories that underlie the quantum treatments of the electromagnetic, weak, and strong forces share a peculiar feature: specifying the initial state of the field determines the evolution of some degrees of freedom of the theory while leaving the evolution of some others wholly arbitrary. This strongly suggests that some of the variables of the standard state space lack physical content-intuitively, the space of states of such a theory is of higher dimension than the corresponding space of genuine (...)
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • Falling cats, parallel parking, and polarized light.Robert W. Batterman - 2003 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 34 (4):527-557.
    This paper addresses issues surrounding the concept of geometric phase or "anholonomy". Certain physical phenomena apparently require for their explanation and understanding, reference to toplogocial/geometric features of some abstract space of parameters. These issues are related to the question of how gauge structures are to be interpreted and whether or not the debate over their "reality" is really going to be fruitful.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Towards Ideal Understanding.Mario Hubert & Federica Isabella Malfatti - 2023 - Ergo 10 (22):578-611.
    What does it take to understand a phenomenon ideally, or to the highest conceivable extent? In this paper, we answer this question by arguing for five necessary conditions for ideal understanding: (i) representational accuracy, (ii) intelligibility, (iii) truth, (iv) reasonable endorsement, and (v) fitting. Even if one disagrees that there is some form of ideal understanding, these five conditions can be regarded as sufficient conditions for a particularly deep level of understanding. We then argue that grasping, novel predictions, and transparency (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Holism and nonseparability in physics.Richard Healey - 2008 - Stanford Encyclopedia of Philosophy.
    It has sometimes been suggested that quantum phenomena exhibit a characteristic holism or nonseparability, and that this distinguishes quantum from classical physics. One puzzling quantum phenomenon arises when one performs measurements of spin or polarization on certain separated quantum systems. The results of these measurements exhibit patterns of statistical correlation that resist traditional causal explanation. Some have held that it is possible to understand these patterns as instances or consequences of quantum holism or nonseparability. Just what holism and nonseparability are (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Symmetries and invariances in classical physics.Katherine Brading & Elena Castellani - unknown - In Jeremy Butterfield & John Earman, [no title]. Elsevier.
    Symmetry, intended as invariance with respect to a transformation (more precisely, with respect to a transformation group), has acquired more and more importance in modern physics. This Chapter explores in 8 Sections the meaning, application and interpretation of symmetry in classical physics. This is done both in general, and with attention to specific topics. The general topics include illustration of the distinctions between symmetries of objects and of laws, and between symmetry principles and symmetry arguments (such as Curie's principle), and (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Change in Hamiltonian general relativity from the lack of a time-like Killing vector field.J. Brian Pitts - 2014 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 47:68-89.
    In General Relativity in Hamiltonian form, change has seemed to be missing, defined only asymptotically, or otherwise obscured at best, because the Hamiltonian is a sum of first-class constraints and a boundary term and thus supposedly generates gauge transformations. Attention to the gauge generator G of Rosenfeld, Anderson, Bergmann, Castellani et al., a specially _tuned sum_ of first-class constraints, facilitates seeing that a solitary first-class constraint in fact generates not a gauge transformation, but a bad physical change in electromagnetism or (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Time and Structure in Canonical Gravity.Dean Rickles - 2006 - In Dean Rickles, Steven French & Juha T. Saatsi, The Structural Foundations of Quantum Gravity. Oxford, GB: Oxford University Press.
    In this paper I wish to make some headway on understanding what \emph{kind} of problem the ``problem of time'' is, and offer a possible resolution---or, rather, a new way of understanding an old resolution. The response I give is a variation on a theme of Rovelli's \emph{evolving constants of motion} strategy. I argue that by giving correlation strategies a \emph{structuralist} basis, a number of objections to the standard account can be blunted. Moreover, I show that the account I offer provides (...)
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • Gauge and Ghosts.Guy Hetzroni - 2021 - British Journal for the Philosophy of Science 72 (3):773-796.
    This article suggests a fresh look at gauge symmetries, with the aim of drawing a clear line between the a priori theoretical considerations involved, and some methodological and empirical non-deductive aspects that are often overlooked. The gauge argument is primarily based on a general symmetry principle expressing the idea that a change of mathematical representation should not change the form of the dynamical law. In addition, the ampliative part of the argument is based on the introduction of new degrees of (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Holism as the empirical significance of symmetries.Henrique Gomes - 2021 - European Journal for Philosophy of Science 11 (3):1-41.
    Not all symmetries are on a par. For instance, within Newtonian mechanics, we seem to have a good grasp on the empirical significance of boosts, by applying it to subsystems. This is exemplified by the thought experiment known as Galileo’s ship: the inertial state of motion of a ship is immaterial to how events unfold in the cabin, but is registered in the values of relational quantities such as the distance and velocity of the ship relative to the shore. But (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Invariance or equivalence: a tale of two principles.Caspar Jacobs - 2021 - Synthese 199 (3-4):9337-9357.
    The presence of symmetries in physical theories implies a pernicious form of underdetermination. In order to avoid this theoretical vice, philosophers often espouse a principle called Leibniz Equivalence, which states that symmetry-related models represent the same state of affairs. Moreover, philosophers have claimed that the existence of non-trivial symmetries motivates us to accept the Invariance Principle, which states that quantities that vary under a theory’s symmetries aren’t physically real. Leibniz Equivalence and the Invariance Principle are often seen as part of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Rehabilitating relationalism.Gordon Belot - 1999 - International Studies in the Philosophy of Science 13 (1):35 – 52.
    I argue that the conviction, widespread among philosophers, that substantivalism enjoys a clear superiority over relationalism in both Newtonian and relativistic physics is ill-founded. There are viable relationalist approaches to understanding these theories, and the substantival-relational debate should be of interest to philosophers and physicists alike, because of its connection with questions about the correct space of states for various physical theories.
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Why Not Categorical Equivalence?James Owen Weatherall - 2021 - In Judit Madarász & Gergely Székely, Hajnal Andréka and István Németi on Unity of Science: From Computing to Relativity Theory Through Algebraic Logic. Springer. pp. 427-451.
    In recent years, philosophers of science have explored categorical equivalence as a promising criterion for when two theories are equivalent. On the one hand, philosophers have presented several examples of theories whose relationships seem to be clarified using these categorical methods. On the other hand, philosophers and logicians have studied the relationships, particularly in the first order case, between categorical equivalence and other notions of equivalence of theories, including definitional equivalence and generalized definitional equivalence. In this article, I will express (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Two Approaches to Fractional Statistics in the Quantum Hall Effect: Idealizations and the Curious Case of the Anyon.Elay Shech - 2015 - Foundations of Physics 45 (9):1063-1100.
    This paper looks at the nature of idealizations and representational structures appealed to in the context of the fractional quantum Hall effect, specifically, with respect to the emergence of anyons and fractional statistics. Drawing on an analogy with the Aharonov–Bohm effect, it is suggested that the standard approach to the effects— the topological approach to fractional statistics—relies essentially on problematic idealizations that need to be revised in order for the theory to be explanatory. An alternative geometric approach is outlined and (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Nonseparability, Classical, and Quantum.Wayne C. Myrvold - 2011 - British Journal for the Philosophy of Science 62 (2):417-432.
    This article examines the implications of the holonomy interpretation of classical electromagnetism. As has been argued by Richard Healey and Gordon Belot, classical electromagnetism on this interpretation evinces a form of nonseparability, something that otherwise might have been thought of as confined to nonclassical physics. Consideration of the differences between this classical nonseparability and quantum nonseparability shows that the nonseparability exhibited by the classical electromagnetism on the holonomy interpretation is closer to separability than might at first appear.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Idealizations, essential self-adjointness, and minimal model explanation in the Aharonov–Bohm effect.Shech Elay - 2018 - Synthese 195 (11):4839-4863.
    Two approaches to understanding the idealizations that arise in the Aharonov–Bohm effect are presented. It is argued that a common topological approach, which takes the non-simply connected electron configuration space to be an essential element in the explanation and understanding of the effect, is flawed. An alternative approach is outlined. Consequently, it is shown that the existence and uniqueness of self-adjoint extensions of symmetric operators in quantum mechanics have important implications for philosophical issues. Also, the alleged indispensable explanatory role of (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Gauge-Underdetermination and Shades of Locality in the Aharonov–Bohm Effect.Ruward A. Mulder - 2021 - Foundations of Physics 51 (2):1-26.
    I address the view that the classical electromagnetic potentials are shown by the Aharonov–Bohm effect to be physically real. I give a historico-philosophical presentation of this view and assess its prospects, more precisely than has so far been done in the literature. Taking the potential as physically real runs prima facie into ‘gauge-underdetermination’: different gauge choices represent different physical states of affairs and hence different theories. This fact is usually not acknowledged in the literature, neither by proponents nor by opponents (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The rotating discs argument defeated.Jeremy Butterfield - 2006 - British Journal for the Philosophy of Science 57 (1):1-45.
    The rotating discs argument against perdurantism has been mostly discussed by metaphysicians, though the argument of course appeals to ideas from classical mechanics, especially about rotation. In contrast, I assess the RDA from the perspective of the philosophy of physics. I argue for three main conclusions. The first conclusion is that the RDA can be formulated more strongly than is usually recognized: it is not necessary to ‘imagine away’ the dynamical effects of rotation. The second is that in general relativity, (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • The metaphysics of fibre bundles.Caspar Jacobs - 2023 - Studies in History and Philosophy of Science Part A 97 (C):34-43.
    Recently, Dewar (2019) has suggested that one can apply the strategy of 'sophistication' - as exemplified by sophisticated substantivalism as a response to the diffeomorphism invariance of General Relativity - to gauge theories such as electrodynamics. This requires a shift to the formalism of fibre bundles. In this paper, I develop and defend this suggestion. Where my approach differs from previous discussions is that I focus on the metaphysical picture underlying the fibre bundle formalism. In particular, I aim to affirm (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Heuristic Power of Theory Classification, the Case of General Relativity.Diego Maltrana & Nicolás Sepúlveda-Quiroz - 2022 - Foundations of Physics 52 (4):1-24.
    In this article, we explore the heuristic power of the theoretical distinction between framework and interaction theories applied to the case of General Relativity. According to the distinction, theories and theoretical elements can be classified into two different groups, each with clear ontological, epistemic and functional content. Being so, to identify the group to which a theory belongs would suffice to know a priori its prospects and limitations in these areas without going into a detailed technical analysis. We make the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Sameness and Separability in Gauge Theories.John Dougherty - 2016 - Philosophy of Science 84 (5):1189-1201.
    In the philosophical literature on Yang-Mills theories, field formulations are taken to have more structure and to be local, while curve-based formulations are taken to have less structure and to be nonlocal. I formalize the notion of locality at issue and show that theories with less structure are nonlocal. However, the amount of structure had by some formulation is independent of whether it uses fields or curves. The relevant difference in structure is not a difference in set-theoretic structure. Rather, it (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The Disappearance and Reappearance of Potential Energy in Classical and Quantum Electrodynamics.Charles T. Sebens - 2022 - Foundations of Physics 52 (5):1-30.
    In electrostatics, we can use either potential energy or field energy to ensure conservation of energy. In electrodynamics, the former option is unavailable. To ensure conservation of energy, we must attribute energy to the electromagnetic field and, in particular, to electromagnetic radiation. If we adopt the standard energy density for the electromagnetic field, then potential energy seems to disappear. However, a closer look at electrodynamics shows that this conclusion actually depends on the kind of matter being considered. Although we cannot (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On emergence in gauge theories at the ’t Hooft limit‘.Nazim Bouatta & Jeremy Butterfield - 2015 - European Journal for Philosophy of Science 5 (1):55-87.
    Quantum field theories are notoriously difficult to understand, physically as well as philosophically. The aim of this paper is to contribute to a better conceptual understanding of gauge quantum field theories, such as quantum chromodynamics, by discussing a famous physical limit, the ’t Hooft limit, in which the theory concerned often simplifies. The idea of the limit is that the number N of colours goes to infinity. The simplifications that can happen in this limit, and that we will consider, are: (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • A partial elucidation of the gauge principle.Alexandre Guay - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (2):346-363.
    The elucidation of the gauge principle ‘‘is the most pressing problem in current philosophy of physics’’ said Michael Redhead in 2003. This paper argues for two points that contribute to this elucidation in the context of Yang–Mills theories. (1) Yang–Mills theories, including quantum electrodynamics, form a class. They should be interpreted together. To focus on electrodynamics is potentially misleading. (2) The essential role of gauge and BRST symmetries is to provide a local field theory that can be quantized and would (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • The Coalescence Approach to Inequivalent Representation: Pre-QM ∞ Parallels.Caspar Jacobs - 2023 - British Journal for the Philosophy of Science 74 (4):1069-1090.
    Ruetsche ([2011]) argues that the occurrence of unitarily inequivalent representations in quantum theories with infinitely many degrees of freedom poses a novel interpretational problem. According to Ruetsche, such theories compel us to reject the so-called ideal of pristine interpretation; she puts forward the ‘coalescence approach’ as an alternative. In this paper I offer a novel defence of the coalescence approach. The defence rests on the claim that the ideal of pristine interpretation already fails before one considers the peculiarities of QM∞: (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Why is the transference theory of causation insuffcient? The challenge of the Aharonov-Bohm effect.Vincent Ardourel & Alexandre Guay - 2018 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 63:12-23.
    The transference theory reduces causation to the transmission of physical conserved quantities, like energy or momenta. Although this theory aims at applying to all felds of physics, we claim that it fails to account for a quantum electrodynamic effect, viz. the Aharonov-Bohm effect. After having argued that the Aharonov-Bohm effect is a genuine counter-example for the transference theory, we offer a new physicalist approach of causation, ontic and modal, in which this effect is embedded.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Wait, why gauge?Sébastien Rivat - forthcoming - British Journal for the Philosophy of Science.
    Philosophers of physics have spent much effort unpacking the structure of gauge theories. But surprisingly, little attention has been devoted to the question of why we should require our best theories to be locally gauge invariant in the first place. Drawing on Steven Weinberg's works in the mid-1960s, I argue that the principle of local gauge invariance follows from Lorentz invariance and other natural assumptions in the context of perturbative relativistic quantum field theory. On this view, gauge freedom is a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Which gauge matters?James Mattingly - 2006 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 37 (2):243-262.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • General relativity needs no interpretation.Erik Curiel - 2009 - Philosophy of Science 76 (1):44-72.
    I argue that, contrary to the recent claims of physicists and philosophers of physics, general relativity requires no interpretation in any substantive sense of the term. I canvass the common reasons given in favor of the alleged need for an interpretation, including the difficulty in coming to grips with the physical significance of diffeomorphism invariance and of singular structure, and the problems faced in the search for a theory of quantum gravity. I find that none of them shows any defect (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Betting on Future Physics.Mike D. Schneider - 2022 - British Journal for the Philosophy of Science 73 (1):161-183.
    The ‘cosmological constant problem’ has historically been understood as describing a conflict between cosmological observations in the framework of general relativity and theoretical predictions from quantum field theory, which a future theory of quantum gravity ought to resolve. I argue that this view of the CCP is best understood in terms of a bet about future physics made on the basis of particular interpretational choices in GR and QFT, respectively. Crucially, each of these choices must be taken as itself grounded (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Against Pointillisme about Geometry.Jeremy Butterfield - 2006 - In Friedrich Stadler & Michael Stöltzner, Time and History: Proceedings of the 28. International Ludwig Wittgenstein Symposium, Kirchberg Am Wechsel, Austria 2005. Frankfurt, Germany: De Gruyter. pp. 181-222.
    This paper forms part of a wider campaign: to deny pointillisme. That is the doctrine that a physical theory's fundamental quantities are defined at points of space or of spacetime, and represent intrinsic properties of such points or point-sized objects located there; so that properties of spatial or spatiotemporal regions and their material contents are determined by the point-by-point facts. More specifically, this paper argues against pointillisme about the structure of space and-or spacetime itself, especially a paper by Bricker (1993). (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Gravity and Gauge.Nicholas J. Teh - 2016 - British Journal for the Philosophy of Science 67 (2):497-530.
    Philosophers of physics and physicists have long been intrigued by the analogies and disanalogies between gravitational theories and gauge theories. Indeed, repeated attempts to collapse these disanalogies have made us acutely aware that there are fairly general obstacles to doing so. Nonetheless, there is a special case space-time dimensions) in which gravity is often claimed to be identical to a gauge theory. I subject this claim to philosophical scrutiny in this article. In particular, I analyse how the standard disanalogies can (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • I ain’t afraid of no ghost.John Dougherty - 2021 - Studies in History and Philosophy of Science Part A 88 (C):70-84.
    This paper criticizes the traditional philosophical account of the quantization of gauge theories and offers an alternative. On the received view, gauge theories resist quantization because they feature distinct mathematical representatives of the same physical state of affairs. This resistance is overcome by a sequence of ad hoc modifications, justified in part by reference to semiclassical electrodynamics. Among other things, these modifications introduce "ghosts": particles with unphysical properties which do not appear in asymptotic states and which are said to be (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Against Pointillisme: a Call to Arms.Jeremy Butterfield - unknown
    This paper forms part of a wider campaign: to deny pointillisme. That is the doctrine that a physical theory's fundamental quantities are defined at points of space or of spacetime, and represent intrinsic properties of such points or point-sized objects located there; so that properties of spatial or spatiotemporal regions and their material contents are determined by the point-by-point facts. Elsewhere, I argued against pointillisme about chrono-geometry, and about velocity in classical mechanics. In both cases, attention focussed on temporal extrinsicality: (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Change without change, and how to observe it in general relativity.Richard Healey - 2004 - Synthese 141 (3):381 - 415.
    All change involves temporal variation of properties. There is change in the physical world only if genuine physical magnitudes take on different values at different times. I defend the possibility of change in a general relativistic world against two skeptical arguments recently presented by John Earman. Each argument imposes severe restrictions on what may count as a genuine physical magnitude in general relativity. These restrictions seem justified only as long as one ignores the fact that genuine change in a relativistic (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Non‐Locality in Classical Electrodynamics.Mathias Frisch - 2002 - British Journal for the Philosophy of Science 53 (1):1-19.
    in Dirac's classical theory of the electron—is causally non-local. I distinguish two distinct causal locality principles and argue, using Dirac's theory as my main case study, that neither can be reduced to a non-causal principle of local determinism.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Causes, Counterfactuals, and Non-Locality.Mathias Frisch - 2010 - Australasian Journal of Philosophy 88 (4):655-672.
    In order to motivate the thesis that there is no single concept of causation that can do justice to all of our core intuitions concerning that concept, Ned Hall has argued that there is a conflict between a counterfactual criterion of causation and the condition of causal locality. In this paper I critically examine Hall's argument within the context of a more general discussion of the role of locality constraints in a causal conception of the world. I present two strategies (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Relativity and Equivalence in Hilbert Space: A Principle-Theory Approach to the Aharonov–Bohm Effect.Guy Hetzroni - 2020 - Foundations of Physics 50 (2):120-135.
    This paper formulates generalized versions of the general principle of relativity and of the principle of equivalence that can be applied to general abstract spaces. It is shown that when the principles are applied to the Hilbert space of a quantum particle, its law of coupling to electromagnetic fields is obtained. It is suggested to understand the Aharonov-Bohm effect in light of these principles, and the implications for some related foundational controversies are discussed.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On gauge symmetries, indiscernibilities, and groupoid-theoretical equalities.Gabriel Catren - 2022 - Studies in History and Philosophy of Science Part A 91 (C):244-261.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • What Are Symmetries?David John Baker - 2022 - Ergo: An Open Access Journal of Philosophy 9.
    I advance a stipulational account of symmetry-to-reality inference, according to which symmetries are part of the content of theories. For a theory to have a certain symmetry is for the theory to stipulate that models related by the symmetry represent the same possibility. I show that the stipulational account compares positively with alternatives, including Dasgupta’s epistemic account of symmetry, Møller-Nielsen’s motivational account, and so-called formal and ontic accounts. In particular, the stipulational account avoids the problems Belot and Dasgupta have raised (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation