Switch to: References

Citations of:

Foundations of Constructive Analysis

New York, NY, USA: Mcgraw-Hill (1967)

Add citations

You must login to add citations.
  1. A first constructive look at the comparison of projections.D. S. Bridges & L. S. Vita - 2013 - Logic Journal of the IGPL 21 (1):14-27.
    Download  
     
    Export citation  
     
    Bookmark  
  • Feng Ye. Strict Finitism and the Logic of Mathematical Applications.Nigel Vinckier & Jean Paul Van Bendegem - 2016 - Philosophia Mathematica 24 (2):247-256.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Theological Underpinnings of the Modern Philosophy of Mathematics.Vladislav Shaposhnikov - 2016 - Studies in Logic, Grammar and Rhetoric 44 (1):147-168.
    The study is focused on the relation between theology and mathematics in the situation of increasing secularization. My main concern in the second part of this paper is the early-twentieth-century foundational crisis of mathematics. The hypothesis that pure mathematics partially fulfilled the functions of theology at that time is tested on the views of the leading figures of the three main foundationalist programs: Russell, Hilbert and Brouwer.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Objectivity of Mathematics.Stewart Shapiro - 2007 - Synthese 156 (2):337-381.
    The purpose of this paper is to apply Crispin Wright’s criteria and various axes of objectivity to mathematics. I test the criteria and the objectivity of mathematics against each other. Along the way, various issues concerning general logic and epistemology are encountered.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Existence Assumptions and Logical Principles: Choice Operators in Intuitionistic Logic.Corey Edward Mulvihill - 2015 - Dissertation, University of Waterloo
    Hilbert’s choice operators τ and ε, when added to intuitionistic logic, strengthen it. In the presence of certain extensionality axioms they produce classical logic, while in the presence of weaker decidability conditions for terms they produce various superintuitionistic intermediate logics. In this thesis, I argue that there are important philosophical lessons to be learned from these results. To make the case, I begin with a historical discussion situating the development of Hilbert’s operators in relation to his evolving program in the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Three Philosophical Approaches to Entomology.Jean-Marc Drouin - 2013 - In Hanne Andersen, Dennis Dieks, Wenceslao J. Gonzalez, Thomas Uebel & Gregory Wheeler (eds.), New Challenges to Philosophy of Science. Springer Verlag. pp. 377--386.
    Download  
     
    Export citation  
     
    Bookmark  
  • Apartness spaces as a framework for constructive topology.Douglas Bridges & Luminiţa Vîţă - 2003 - Annals of Pure and Applied Logic 119 (1-3):61-83.
    An axiomatic development of the theory of apartness and nearness of a point and a set is introduced as a framework for constructive topology. Various notions of continuity of mappings between apartness spaces are compared; the constructive independence of one of the axioms from the others is demonstrated; and the product apartness structure is defined and analysed.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Uniformly convex Banach spaces are reflexive—constructively.Douglas S. Bridges, Hajime Ishihara & Maarten McKubre-Jordens - 2013 - Mathematical Logic Quarterly 59 (4-5):352-356.
    We propose a natural definition of what it means in a constructive context for a Banach space to be reflexive, and then prove a constructive counterpart of the Milman-Pettis theorem that uniformly convex Banach spaces are reflexive.
    Download  
     
    Export citation  
     
    Bookmark  
  • Glueing continuous functions constructively.Douglas S. Bridges & Iris Loeb - 2010 - Archive for Mathematical Logic 49 (5):603-616.
    The glueing of (sequentially, pointwise, or uniformly) continuous functions that coincide on the intersection of their closed domains is examined in the light of Bishop-style constructive analysis. This requires us to pay attention to the way that the two domains intersect.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Constructivist and structuralist foundations: Bishop’s and Lawvere’s theories of sets.Erik Palmgren - 2012 - Annals of Pure and Applied Logic 163 (10):1384-1399.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Types, Sets and Categories.John L. Bell - unknown
    This essay is an attempt to sketch the evolution of type theory from its beginnings early in the last century to the present day. Central to the development of the type concept has been its close relationship with set theory to begin with and later its even more intimate relationship with category theory. Since it is effectively impossible to describe these relationships (especially in regard to the latter) with any pretensions to completeness within the space of a comparatively short article, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Set theory: Constructive and intuitionistic ZF.Laura Crosilla - 2010 - Stanford Encyclopedia of Philosophy.
    Constructive and intuitionistic Zermelo-Fraenkel set theories are axiomatic theories of sets in the style of Zermelo-Fraenkel set theory (ZF) which are based on intuitionistic logic. They were introduced in the 1970's and they represent a formal context within which to codify mathematics based on intuitionistic logic. They are formulated on the basis of the standard first order language of Zermelo-Fraenkel set theory and make no direct use of inherently constructive ideas. In working in constructive and intuitionistic ZF we can thus (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Abstract objects.Gideon Rosen - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   93 citations  
  • Constructive mathematics.Douglas Bridges - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Intuitionistic views on the nature of mathematics.Arend Heyting - 1974 - Synthese 27 (1-2):79 - 91.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • The knowing mathematician.Nicolas D. Goodman - 1984 - Synthese 60 (1):21 - 38.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Building infinite machines.E. B. Davies - 2001 - British Journal for the Philosophy of Science 52 (4):671-682.
    We describe in some detail how to build an infinite computing machine within a continuous Newtonian universe. The relevance of our construction to the Church-Turing thesis and the Platonist-Intuitionist debate about the nature of mathematics is also discussed.
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Countable choice as a questionable uniformity principle.Peter M. Schuster - 2004 - Philosophia Mathematica 12 (2):106-134.
    Should weak forms of the axiom of choice really be accepted within constructive mathematics? A critical view of the Brouwer-Heyting-Kolmogorov interpretation, accompanied by the intention to include nondeterministic algorithms, leads us to subscribe to Richman's appeal for dropping countable choice. As an alternative interpretation of intuitionistic logic, we propose to renew dialogue semantics.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Constructive mathematics and quantum mechanics: Unbounded operators and the spectral theorem. [REVIEW]Geoffrey Hellman - 1993 - Journal of Philosophical Logic 22 (3):221 - 248.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Can constructive mathematics be applied in physics?Douglas S. Bridges - 1999 - Journal of Philosophical Logic 28 (5):439-453.
    The nature of modern constructive mathematics, and its applications, actual and potential, to classical and quantum physics, are discussed.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Constructive mathematics in theory and programming practice.Douglas Bridges & Steeve Reeves - 1999 - Philosophia Mathematica 7 (1):65-104.
    The first part of the paper introduces the varieties of modern constructive mathematics, concentrating on Bishop's constructive mathematics (BISH). it gives a sketch of both Myhill's axiomatic system for BISH and a constructive axiomatic development of the real line R. The second part of the paper focusses on the relation between constructive mathematics and programming, with emphasis on Martin-L6f 's theory of types as a formal system for BISH.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Divergent Potentialism: A Modal Analysis With an Application to Choice Sequences.Ethan Brauer, Øystein Linnebo & Stewart Shapiro - 2022 - Philosophia Mathematica 30 (2):143-172.
    Modal logic has been used to analyze potential infinity and potentialism more generally. However, the standard analysis breaks down in cases of divergent possibilities, where there are two or more possibilities that can be individually realized but which are jointly incompatible. This paper has three aims. First, using the intuitionistic theory of choice sequences, we motivate the need for a modal analysis of divergent potentialism and explain the challenges this involves. Then, using Beth–Kripke semantics for intuitionistic logic, we overcome those (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Bishop's Mathematics: a Philosophical Perspective.Laura Crosilla - forthcoming - In Handbook of Bishop's Mathematics. CUP.
    Errett Bishop's work in constructive mathematics is overwhelmingly regarded as a turning point for mathematics based on intuitionistic logic. It brought new life to this form of mathematics and prompted the development of new areas of research that witness today's depth and breadth of constructive mathematics. Surprisingly, notwithstanding the extensive mathematical progress since the publication in 1967 of Errett Bishop's Foundations of Constructive Analysis, there has been no corresponding advances in the philosophy of constructive mathematics Bishop style. The aim of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Review of The Algebraic Approaches to Quantum Mechanics. Some Appraisals of Their Theoretical Importance.Antonino Drago - manuscript
    The main algebraic foundations of quantum mechanics are quickly reviewed. They have been suggested since the birth of this theory till up to last years. They are the following ones: Heisenberg-Born- Jordan’s (1925), Weyl’s (1928), Dirac’s (1930), von Neumann’s (1936), Segal’s (1947), T.F. Jordan’s (1986), Morchio and Strocchi’s (2009) and Buchholz and Fregenhagen’s (2019). Four cases are stressed: 1) the misinterpretation of Dirac’s algebraic foundation; 2) von Neumann’s ‘conversion’ from the analytic approach of Hilbert space to the algebraic approach of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On Different Ways of Being Equal.Bruno Bentzen - 2020 - Erkenntnis 87 (4):1809-1830.
    The aim of this paper is to present a constructive solution to Frege's puzzle (largely limited to the mathematical context) based on type theory. Two ways in which an equality statement may be said to have cognitive significance are distinguished. One concerns the mode of presentation of the equality, the other its mode of proof. Frege's distinction between sense and reference, which emphasizes the former aspect, cannot adequately explain the cognitive significance of equality statements unless a clear identity criterion for (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Logical pluralism and normativity.Stewart Shapiro & Teresa Kouri Kissel - 2020 - Inquiry: An Interdisciplinary Journal of Philosophy 63 (3-4):389-410.
    We are logical pluralists who hold that the right logic is dependent on the domain of investigation; different logics for different mathematical theories. The purpose of this article is to explore the ramifications for our pluralism concerning normativity. Is there any normative role for logic, once we give up its universality? We discuss Florian Steingerger’s “Frege and Carnap on the Normativity of Logic” as a source for possible types of normativity, and then turn to our own proposal, which postulates that (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Maddy On The Multiverse.Claudio Ternullo - 2019 - In Stefania Centrone, Deborah Kant & Deniz Sarikaya (eds.), Reflections on the Foundations of Mathematics: Univalent Foundations, Set Theory and General Thoughts. Springer Verlag. pp. 43-78.
    Penelope Maddy has recently addressed the set-theoretic multiverse, and expressed reservations on its status and merits ([Maddy, 2017]). The purpose of the paper is to examine her concerns, by using the interpretative framework of set-theoretic naturalism. I first distinguish three main forms of 'multiversism', and then I proceed to analyse Maddy's concerns. Among other things, I take into account salient aspects of multiverse-related mathematics , in particular, research programmes in set theory for which the use of the multiverse seems to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Mathematical and Moral Disagreement.Silvia Jonas - 2020 - Philosophical Quarterly 70 (279):302-327.
    The existence of fundamental moral disagreements is a central problem for moral realism and has often been contrasted with an alleged absence of disagreement in mathematics. However, mathematicians do in fact disagree on fundamental questions, for example on which set-theoretic axioms are true, and some philosophers have argued that this increases the plausibility of moral vis-à-vis mathematical realism. I argue that the analogy between mathematical and moral disagreement is not as straightforward as those arguments present it. In particular, I argue (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The entanglement of logic and set theory, constructively.Laura Crosilla - 2022 - Inquiry: An Interdisciplinary Journal of Philosophy 65 (6).
    ABSTRACT Theories of sets such as Zermelo Fraenkel set theory are usually presented as the combination of two distinct kinds of principles: logical and set-theoretic principles. The set-theoretic principles are imposed ‘on top’ of first-order logic. This is in agreement with a traditional view of logic as universally applicable and topic neutral. Such a view of logic has been rejected by the intuitionists, on the ground that quantification over infinite domains requires the use of intuitionistic rather than classical logic. In (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Does Logical Pluralism Imply, or Suggest, Truth Pluralism, or Vice Versa?Stewart Shapiro & Michael Lynch - 2019 - Synthese 198 (Suppl 20):4925-4936.
    The answers to the questions in the title depend on the kind of pluralism one is talking about. We will focus here on our own views. The purpose of this article is to trace out some possible connections between these kinds of pluralism. We show how each of them might bear on the other, depending on how certain open questions are resolved.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Supertasks and Arithmetical Truth.Jared Warren & Daniel Waxman - 2020 - Philosophical Studies 177 (5):1275-1282.
    This paper discusses the relevance of supertask computation for the determinacy of arithmetic. Recent work in the philosophy of physics has made plausible the possibility of supertask computers, capable of running through infinitely many individual computations in a finite time. A natural thought is that, if supertask computers are possible, this implies that arithmetical truth is determinate. In this paper we argue, via a careful analysis of putative arguments from supertask computations to determinacy, that this natural thought is mistaken: supertasks (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Possibilities, models, and intuitionistic logic: Ian Rumfitt’s The boundary stones of thought.Stewart Shapiro - 2019 - Inquiry: An Interdisciplinary Journal of Philosophy 62 (7):812-825.
    ABSTRACTAIan Rumfitt's new book presents a distinctive and intriguing philosophy of logic, one that ultimately settles on classical logic as the uniquely correct one–or at least rebuts some prominent arguments against classical logic. The purpose of this note is to evaluate Rumfitt's perspective by focusing on some themes that have occupied me for some time: the role and importance of model theory and, in particular, the place of counter-arguments in establishing invalidity, higher-order logic, and the logical pluralism/relativism articulated in my (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Exploring Predicativity.Laura Crosilla - 1995 - In Klaus Mainzer, Peter Schuster & Helmut Schwichtenberg (eds.), Proof and Computation. World Scientific. pp. 83-108.
    Prominent constructive theories of sets as Martin-Löf type theory and Aczel and Myhill constructive set theory, feature a distinctive form of constructivity: predicativity. This may be phrased as a constructibility requirement for sets, which ought to be finitely specifiable in terms of some uncontroversial initial “objects” and simple operations over them. Predicativity emerged at the beginning of the 20th century as a fundamental component of an influential analysis of the paradoxes by Poincaré and Russell. According to this analysis the paradoxes (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Enciclopédia de Termos Lógico-Filosóficos.João Miguel Biscaia Branquinho, Desidério Murcho & Nelson Gonçalves Gomes (eds.) - 2006 - São Paulo, SP, Brasil: Martins Fontes.
    Esta enciclopédia abrange, de uma forma introdutória mas desejavelmente rigorosa, uma diversidade de conceitos, temas, problemas, argumentos e teorias localizados numa área relativamente recente de estudos, os quais tem sido habitual qualificar como «estudos lógico-filosóficos». De uma forma apropriadamente genérica, e apesar de o território teórico abrangido ser extenso e de contornos por vezes difusos, podemos dizer que na área se investiga um conjunto de questões fundamentais acerca da natureza da linguagem, da mente, da cognição e do raciocínio humanos, bem (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • A note on incomplete theory.Han Geurdes - manuscript
    In the paper it is demonstrated that Bell's theorem is unproveable.
    Download  
     
    Export citation  
     
    Bookmark  
  • C. S. Peirce and Intersemiotic Translation.Joao Queiroz & Daniella Aguiar - 2015 - In Peter Pericles Trifonas (ed.), International Handbook of Semiotics. Dordrecht: Springer. pp. 201-215.
    Intersemiotic translation (IT) was defined by Roman Jakobson (The Translation Studies Reader, Routledge, London, p. 114, 2000) as “transmutation of signs”—“an interpretation of verbal signs by means of signs of nonverbal sign systems.” Despite its theoretical relevance, and in spite of the frequency in which it is practiced, the phenomenon remains virtually unexplored in terms of conceptual modeling, especially from a semiotic perspective. Our approach is based on two premises: (i) IT is fundamentally a semiotic operation process (semiosis) and (ii) (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • An Objection to Naturalism and Atheism from Logic.Christopher Gregory Weaver - 2019 - In Graham Oppy (ed.), A Companion to Atheism and Philosophy. Hoboken: Blackwell. pp. 451-475.
    I proffer a success argument for classical logical consequence. I articulate in what sense that notion of consequence should be regarded as the privileged notion for metaphysical inquiry aimed at uncovering the fundamental nature of the world. Classical logic breeds necessitism. I use necessitism to produce problems for both ontological naturalism and atheism.
    Download  
     
    Export citation  
     
    Bookmark  
  • Proofs and Retributions, Or: Why Sarah Can’t Take Limits.Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz & Mary Schaps - 2015 - Foundations of Science 20 (1):1-25.
    The small, the tiny, and the infinitesimal have been the object of both fascination and vilification for millenia. One of the most vitriolic reviews in mathematics was that written by Errett Bishop about Keisler’s book Elementary Calculus: an Infinitesimal Approach. In this skit we investigate both the argument itself, and some of its roots in Bishop George Berkeley’s criticism of Leibnizian and Newtonian Calculus. We also explore some of the consequences to students for whom the infinitesimal approach is congenial. The (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Pluralism and Proofs.Greg Restall - 2014 - Erkenntnis 79 (S2):279-291.
    Beall and Restall’s Logical Pluralism (2006) characterises pluralism about logical consequence in terms of the different ways cases can be selected in the analysis of logical consequence as preservation of truth over a class of cases. This is not the only way to understand or to motivate pluralism about logical consequence. Here, I will examine pluralism about logical consequence in terms of different standards of proof. We will focus on sequent derivations for classical logic, imposing two different restrictions on classical (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Philosophical reflections on the foundations of mathematics.Jocelyne Couture & Joachim Lambek - 1991 - Erkenntnis 34 (2):187 - 209.
    This article was written jointly by a philosopher and a mathematician. It has two aims: to acquaint mathematicians with some of the philosophical questions at the foundations of their subject and to familiarize philosophers with some of the answers to these questions which have recently been obtained by mathematicians. In particular, we argue that, if these recent findings are borne in mind, four different basic philosophical positions, logicism, formalism, platonism and intuitionism, if stated with some moderation, are in fact reconcilable, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Why do mathematicians re-prove theorems?John W. Dawson Jr - 2006 - Philosophia Mathematica 14 (3):269-286.
    From ancient times to the present, the discovery and presentation of new proofs of previously established theorems has been a salient feature of mathematical practice. Why? What purposes are served by such endeavors? And how do mathematicians judge whether two proofs of the same theorem are essentially different? Consideration of such questions illuminates the roles that proofs play in the validation and communication of mathematical knowledge and raises issues that have yet to be resolved by mathematical logicians. The Appendix, in (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Real analysis without classes.Geoffrey Hellman - 1994 - Philosophia Mathematica 2 (3):228-250.
    This paper explores strengths and limitations of both predicativism and nominalism, especially in connection with the problem of characterizing the continuum. Although the natural number structure can be recovered predicatively (despite appearances), no predicative system can characterize even the full predicative continuum which the classicist can recognize. It is shown, however, that the classical second-order theory of continua (third-order number theory) can be recovered nominalistically, by synthesizing mereology, plural quantification, and a modal-structured approach with essentially just the assumption that an (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • History and Philosophy of Constructive Type Theory.Giovanni Sommaruga - 2000 - Dordrecht, Netherland: Springer.
    A comprehensive survey of Martin-Löf's constructive type theory, considerable parts of which have only been presented by Martin-Löf in lecture form or as part of conference talks. Sommaruga surveys the prehistory of type theory and its highly complex development through eight different stages from 1970 to 1995. He also provides a systematic presentation of the latest version of the theory, as offered by Martin-Löf at Leiden University in Fall 1993. This presentation gives a fuller and updated account of the system. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Constructivity and Computability in Historical and Philosophical Perspective.Jacques Dubucs & Michel Bourdeau (eds.) - 2014 - Dordrecht, Netherland: Springer.
    Ranging from Alan Turing’s seminal 1936 paper to the latest work on Kolmogorov complexity and linear logic, this comprehensive new work clarifies the relationship between computability on the one hand and constructivity on the other. The authors argue that even though constructivists have largely shed Brouwer’s solipsistic attitude to logic, there remain points of disagreement to this day. Focusing on the growing pains computability experienced as it was forced to address the demands of rapidly expanding applications, the content maps the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The abstract type of the real numbers.Fernando Ferreira - 2021 - Archive for Mathematical Logic 60 (7):1005-1017.
    In finite type arithmetic, the real numbers are represented by rapidly converging Cauchy sequences of rational numbers. Ulrich Kohlenbach introduced abstract types for certain structures such as metric spaces, normed spaces, Hilbert spaces, etc. With these types, the elements of the spaces are given directly, not through the mediation of a representation. However, these abstract spaces presuppose the real numbers. In this paper, we show how to set up an abstract type for the real numbers. The appropriateness of our construction (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • An intuitionistic logic for preference relations.Paolo Maffezioli & Alberto Naibo - 2019 - Logic Journal of the IGPL 27 (4):434-450.
    We investigate in intuitionistic first-order logic various principles of preference relations alternative to the standard ones based on the transitivity and completeness of weak preference. In particular, we suggest two ways in which completeness can be formulated while remaining faithful to the spirit of constructive reasoning, and we prove that the cotransitivity of the strict preference relation is a valid intuitionistic alternative to the transitivity of weak preference. Along the way, we also show that the acyclicity axiom is not finitely (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Why logical pluralism?Colin R. Caret - 2019 - Synthese 198 (Suppl 20):4947-4968.
    This paper scrutinizes the debate over logical pluralism. I hope to make this debate more tractable by addressing the question of motivating data: what would count as strong evidence in favor of logical pluralism? Any research program should be able to answer this question, but when faced with this task, many logical pluralists fall back on brute intuitions. This sets logical pluralism on a weak foundation and makes it seem as if nothing pressing is at stake in the debate. The (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • A continuity principle equivalent to the monotone $$Pi ^{0}_{1}$$ fan theorem.Tatsuji Kawai - 2019 - Archive for Mathematical Logic 58 (3-4):443-456.
    The strong continuity principle reads “every pointwise continuous function from a complete separable metric space to a metric space is uniformly continuous near each compact image.” We show that this principle is equivalent to the fan theorem for monotone \ bars. We work in the context of constructive reverse mathematics.
    Download  
     
    Export citation  
     
    Bookmark  
  • The binary expansion and the intermediate value theorem in constructive reverse mathematics.Josef Berger, Hajime Ishihara, Takayuki Kihara & Takako Nemoto - 2019 - Archive for Mathematical Logic 58 (1-2):203-217.
    We introduce the notion of a convex tree. We show that the binary expansion for real numbers in the unit interval ) is equivalent to weak König lemma ) for trees having at most two nodes at each level, and we prove that the intermediate value theorem is equivalent to \ for convex trees, in the framework of constructive reverse mathematics.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Consistency of the intensional level of the Minimalist Foundation with Church’s thesis and axiom of choice.Hajime Ishihara, Maria Emilia Maietti, Samuele Maschio & Thomas Streicher - 2018 - Archive for Mathematical Logic 57 (7-8):873-888.
    Consistency with the formal Church’s thesis, for short CT, and the axiom of choice, for short AC, was one of the requirements asked to be satisfied by the intensional level of a two-level foundation for constructive mathematics as proposed by Maietti and Sambin From sets and types to topology and analysis: practicable foundations for constructive mathematics, Oxford University Press, Oxford, 2005). Here we show that this is the case for the intensional level of the two-level Minimalist Foundation, for short MF, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations