Switch to: References

Citations of:

The non-triviality of dialectical set theory

In Graham Priest, Richard Routley & Jean Norman (eds.), Paraconsistent Logic: Essays on the Inconsistent. Philosophia Verlag. pp. 437--470 (1989)

Add citations

You must login to add citations.
  1. A Bridge Between Q-Worlds.Andreas Döring, E. V. A. Benjamin & Masanao Ozawa - 2021 - Review of Symbolic Logic 14 (2):447-486.
    Quantum set theory (QST) and topos quantum theory (TQT) are two long running projects in the mathematical foundations of quantum mechanics (QM) that share a great deal of conceptual and technical affinity. Most pertinently, both approaches attempt to resolve some of the conceptual difficulties surrounding QM by reformulating parts of the theory inside of nonclassical mathematical universes, albeit with very different internal logics. We call such mathematical universes, together with those mathematical and logical structures within them that are pertinent to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Confused Entailment.Tore Fjetland Øgaard - 2021 - Topoi 41 (1):207-219.
    Priest argued in Fusion and Confusion (Priest in Topoi 34(1):55–61, 2015a) for a new concept of logical consequence over the relevant logic B, one where premises my be “confused” together. This paper develops Priest’s idea. Whereas Priest uses a substructural proof calculus, this paper provides a Hilbert proof calculus for it. Using this it is shown that Priest’s consequence relation is weaker than the standard Hilbert consequence relation for B, but strictly stronger than Anderson and Belnap’s original relevant notion of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Maddy On The Multiverse.Claudio Ternullo - 2019 - In Stefania Centrone, Deborah Kant & Deniz Sarikaya (eds.), Reflections on the Foundations of Mathematics: Univalent Foundations, Set Theory and General Thoughts. Springer Verlag. pp. 43-78.
    Penelope Maddy has recently addressed the set-theoretic multiverse, and expressed reservations on its status and merits ([Maddy, 2017]). The purpose of the paper is to examine her concerns, by using the interpretative framework of set-theoretic naturalism. I first distinguish three main forms of 'multiversism', and then I proceed to analyse Maddy's concerns. Among other things, I take into account salient aspects of multiverse-related mathematics , in particular, research programmes in set theory for which the use of the multiverse seems to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Idealist Origins: 1920s and Before.Martin Davies & Stein Helgeby - 2014 - In Graham Oppy & Nick Trakakis (eds.), History of Philosophy in Australia and New Zealand. Dordrecht: Springer. pp. 15-54.
    This paper explores early Australasian philosophy in some detail. Two approaches have dominated Western philosophy in Australia: idealism and materialism. Idealism was prevalent between the 1880s and the 1930s, but dissipated thereafter. Idealism in Australia often reflected Kantian themes, but it also reflected the revival of interest in Hegel through the work of ‘absolute idealists’ such as T. H. Green, F. H. Bradley, and Henry Jones. A number of the early New Zealand philosophers were also educated in the idealist tradition (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • What Is an Inconsistent Truth Table?Zach Weber, Guillermo Badia & Patrick Girard - 2016 - Australasian Journal of Philosophy 94 (3):533-548.
    ABSTRACTDo truth tables—the ordinary sort that we use in teaching and explaining basic propositional logic—require an assumption of consistency for their construction? In this essay we show that truth tables can be built in a consistency-independent paraconsistent setting, without any appeal to classical logic. This is evidence for a more general claim—that when we write down the orthodox semantic clauses for a logic, whatever logic we presuppose in the background will be the logic that appears in the foreground. Rather than (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Adding a Conditional to Kripke’s Theory of Truth.Lorenzo Rossi - 2016 - Journal of Philosophical Logic 45 (5):485-529.
    Kripke’s theory of truth, 690–716; 1975) has been very successful but shows well-known expressive difficulties; recently, Field has proposed to overcome them by adding a new conditional connective to it. In Field’s theories, desirable conditional and truth-theoretic principles are validated that Kripke’s theory does not yield. Some authors, however, are dissatisfied with certain aspects of Field’s theories, in particular the high complexity. I analyze Field’s models and pin down some reasons for discontent with them, focusing on the meaning of the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Naive Set Theory and Nontransitive Logic.David Ripley - 2015 - Review of Symbolic Logic 8 (3):553-571.
    In a recent series of papers, I and others have advanced new logical approaches to familiar paradoxes. The key to these approaches is to accept full classical logic, and to accept the principles that cause paradox, while preventing trouble by allowing a certain sort ofnontransitivity. Earlier papers have treated paradoxes of truth and vagueness. The present paper will begin to extend the approach to deal with the familiar paradoxes arising in naive set theory, pointing out some of the promises and (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Paradoxos Semânticos.Ricardo Santos - 2014 - Compêndio Em Linha de Problemas de Filosofia Analítica.
    The semantic paradoxes are a family of arguments – including the liar paradox, Curry’s paradox, Grelling’s paradox of heterologicality, Richard’s and Berry’s paradoxes of definability, and others – which have two things in common: first, they make an essential use of such semantic concepts as those of truth, satisfaction, reference, definition, etc.; second, they seem to be very good arguments until we see that their conclusions are contradictory or absurd. These arguments raise serious doubts concerning the coherence of the concepts (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Paths to Triviality.Tore Fjetland Øgaard - 2016 - Journal of Philosophical Logic 45 (3):237-276.
    This paper presents a range of new triviality proofs pertaining to naïve truth theory formulated in paraconsistent relevant logics. It is shown that excluded middle together with various permutation principles such as A → (B → C)⊩B → (A → C) trivialize naïve truth theory. The paper also provides some new triviality proofs which utilize the axioms ((A → B)∧ (B → C)) → (A → C) and (A → ¬A) → ¬A, the fusion connective and the Ackermann constant. An (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Prospects for a Naive Theory of Classes.Hartry Field, Harvey Lederman & Tore Fjetland Øgaard - 2017 - Notre Dame Journal of Formal Logic 58 (4):461-506.
    The naive theory of properties states that for every condition there is a property instantiated by exactly the things which satisfy that condition. The naive theory of properties is inconsistent in classical logic, but there are many ways to obtain consistent naive theories of properties in nonclassical logics. The naive theory of classes adds to the naive theory of properties an extensionality rule or axiom, which states roughly that if two classes have exactly the same members, they are identical. In (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Absolute Contradiction, Dialetheism, and Revenge.Francesco Berto - 2014 - Review of Symbolic Logic 7 (2):193-207.
    Is there a notion of contradiction—let us call it, for dramatic effect, “absolute”—making all contradictions, so understood, unacceptable also for dialetheists? It is argued in this paper that there is, and that spelling it out brings some theoretical benefits. First it gives us a foothold on undisputed ground in the methodologically difficult debate on dialetheism. Second, we can use it to express, without begging questions, the disagreement between dialetheists and their rivals on the nature of truth. Third, dialetheism has an (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Reaching Transparent Truth.Pablo Cobreros, Paul Égré, David Ripley & Robert van Rooij - 2013 - Mind 122 (488):841-866.
    This paper presents and defends a way to add a transparent truth predicate to classical logic, such that and A are everywhere intersubstitutable, where all T-biconditionals hold, and where truth can be made compositional. A key feature of our framework, called STTT (for Strict-Tolerant Transparent Truth), is that it supports a non-transitive relation of consequence. At the same time, it can be seen that the only failures of transitivity STTT allows for arise in paradoxical cases.
    Download  
     
    Export citation  
     
    Bookmark   132 citations  
  • Real Analysis in Paraconsistent Logic.Maarten McKubre-Jordens & Zach Weber - 2012 - Journal of Philosophical Logic 41 (5):901-922.
    This paper begins an analysis of the real line using an inconsistency-tolerant (paraconsistent) logic. We show that basic field and compactness properties hold, by way of novel proofs that make no use of consistency-reliant inferences; some techniques from constructive analysis are used instead. While no inconsistencies are found in the algebraic operations on the real number field, prospects for other non-trivializing contradictions are left open.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Paraconsistency: Logic and Applications.Francesco Berto, Edwin Mares, Koji Tanaka & Francesco Paoli (eds.) - 2012 - Dordrecht, Netherland: Springer.
    A logic is called 'paraconsistent' if it rejects the rule called 'ex contradictione quodlibet', according to which any conclusion follows from inconsistent premises. While logicians have proposed many technically developed paraconsistent logical systems and contemporary philosophers like Graham Priest have advanced the view that some contradictions can be true, and advocated a paraconsistent logic to deal with them, until recent times these systems have been little understood by philosophers. This book presents a comprehensive overview on paraconsistent logical systems to change (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Paraconsistent logic.Graham Priest - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   182 citations  
  • Ultralogic as Universal?: The Sylvan Jungle - Volume 4.Richard Routley - 2019 - Cham, Switzerland: Springer Verlag.
    Ultralogic as Universal? is a seminal text in non-classcial logic. Richard Routley presents a hugely ambitious program: to use an 'ultramodal' logic as a universal key, which opens, if rightly operated, all locks. It provides a canon for reasoning in every situation, including illogical, inconsistent and paradoxical ones, realized or not, possible or not. A universal logic, Routley argues, enables us to go where no other logic—especially not classical logic—can. Routley provides an expansive and singular vision of how a universal (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • A bridge between q-worlds.Benjamin Eva, Masanao Ozawa & Andreas Doering - 2021 - Review of Symbolic Logic 14 (2):447-486.
    Quantum set theory and topos quantum theory are two long running projects in the mathematical foundations of quantum mechanics that share a great deal of conceptual and technical affinity. Most pertinently, both approaches attempt to resolve some of the conceptual difficulties surrounding QM by reformulating parts of the theory inside of nonclassical mathematical universes, albeit with very different internal logics. We call such mathematical universes, together with those mathematical and logical structures within them that are pertinent to the physical interpretation, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Bi-Modal Naive Set Theory.John Wigglesworth - 2018 - Australasian Journal of Logic 15 (2):139-150.
    This paper describes a modal conception of sets, according to which sets are 'potential' with respect to their members. A modal theory is developed, which invokes a naive comprehension axiom schema, modified by adding `forward looking' and `backward looking' modal operators. We show that this `bi-modal' naive set theory can prove modalized interpretations of several ZFC axioms, including the axiom of infinity. We also show that the theory is consistent by providing an S5 Kripke model. The paper concludes with some (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Truth, Pretense and the Liar Paradox.Bradley Armour-Garb & James A. Woodbridge - 2015 - In T. Achourioti, H. Galinon, J. Martínez Fernández & K. Fujimoto (eds.), Unifying the Philosophy of Truth. Dordrecht: Imprint: Springer. pp. 339-354.
    In this paper we explain our pretense account of truth-talk and apply it in a diagnosis and treatment of the Liar Paradox. We begin by assuming that some form of deflationism is the correct approach to the topic of truth. We then briefly motivate the idea that all T-deflationists should endorse a fictionalist view of truth-talk, and, after distinguishing pretense-involving fictionalism (PIF) from error- theoretic fictionalism (ETF), explain the merits of the former over the latter. After presenting the basic framework (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • When Do Some Things Form a Set?Simon Hewitt - 2015 - Philosophia Mathematica 23 (3):311-337.
    This paper raises the question under what circumstances a plurality forms a set, parallel to the Special Composition Question for mereology. The range of answers that have been proposed in the literature are surveyed and criticised. I argue that there is good reason to reject both the view that pluralities never form sets and the view that pluralities always form sets. Instead, we need to affirm restricted set formation. Casting doubt on the availability of any informative principle which will settle (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • New Grounds for Naive Truth Theory.Stephen Yablo - 2003 - In J. C. Beall (ed.), Liars and Heaps: New Essays on Paradox. Oxford, England: Oxford University Press UK. pp. 312-330.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Transfinite Cardinals in Paraconsistent Set Theory.Zach Weber - 2012 - Review of Symbolic Logic 5 (2):269-293.
    This paper develops a (nontrivial) theory of cardinal numbers from a naive set comprehension principle, in a suitable paraconsistent logic. To underwrite cardinal arithmetic, the axiom of choice is proved. A new proof of Cantor’s theorem is provided, as well as a method for demonstrating the existence of large cardinals by way of a reflection theorem.
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • (1 other version)Dialetheism.Graham Priest - 2008 - Stanford Encyclopedia of Philosophy.
    A dialetheia is a sentence, A, such that both it and its negation, A, are true (we shall talk of sentences throughout this entry; but one could run the definition in terms of propositions, statements, or whatever one takes as her favourite truth bearer: this would make little difference in the context). Assuming the fairly uncontroversial view that falsity just is the truth of negation, it can equally be claimed that a dialetheia is a sentence which is both true and (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Logic of paradox revisited.Graham Priest - 1984 - Journal of Philosophical Logic 13 (2):153 - 179.
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • Fixed-Point Models for Theories of Properties and Classes.Greg Restall - 2017 - Australasian Journal of Logic 14 (1).
    There is a vibrant community among philosophical logicians seeking to resolve the paradoxes of classes, properties and truth by way of adopting some non-classical logic in which trivialising paradoxical arguments are not valid. There is also a long tradition in theoretical computer science|going back to Dana Scott's fixed point model construction for the untyped lambda-calculus of models allowing for fixed points. In this paper, I will bring these traditions closer together, to show how these model constructions can shed light on (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Extensionality and Restriction in Naive Set Theory.Zach Weber - 2010 - Studia Logica 94 (1):87-104.
    The naive set theory problem is to begin with a full comprehension axiom, and to find a logic strong enough to prove theorems, but weak enough not to prove everything. This paper considers the sub-problem of expressing extensional identity and the subset relation in paraconsistent, relevant solutions, in light of a recent proposal from Beall, Brady, Hazen, Priest and Restall [4]. The main result is that the proposal, in the context of an independently motivated formalization of naive set theory, leads (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Wittgenstein on Incompleteness Makes Paraconsistent Sense.Francesco Berto - 2012 - In Francesco Berto, Edwin Mares, Koji Tanaka & Francesco Paoli (eds.), Paraconsistency: Logic and Applications. Dordrecht, Netherland: Springer. pp. 257--276.
    I provide an interpretation of Wittgenstein's much criticized remarks on Gödel's First Incompleteness Theorem in the light of paraconsistent arithmetics: in taking Gödel's proof as a paradoxical derivation, Wittgenstein was right, given his deliberate rejection of the standard distinction between theory and metatheory. The reasoning behind the proof of the truth of the Gödel sentence is then performed within the formal system itself, which turns out to be inconsistent. I show that the models of paraconsistent arithmetics (obtained via the Meyer-Mortensen (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (1 other version)Dialetheism.Francesco Berto, Graham Priest & Zach Weber - 2008 - Stanford Encyclopedia of Philosophy 2018 (2018).
    A dialetheia is a sentence, A, such that both it and its negation, ¬A, are true (we shall talk of sentences throughout this entry; but one could run the definition in terms of propositions, statements, or whatever one takes as her favourite truth-bearer: this would make little difference in the context). Assuming the fairly uncontroversial view that falsity just is the truth of negation, it can equally be claimed that a dialetheia is a sentence which is both true and false.
    Download  
     
    Export citation  
     
    Bookmark   73 citations  
  • Property Identity and Relevant Conditionals.Zach Weber - 2020 - Australasian Philosophical Review 4 (2):147-155.
    ABSTRACT In ‘Properties, Propositions, and Conditionals’ Field [2021] advances further on our understanding of the logic and meaning of naive theories – theories that maintain, in the face of paradox, basic assumptions about properties and propositions. His work follows in a tradition going back over 40 years now, of using Kripke fixed-point model constructions to show how naive schemas can be (Post) consistent, as long as one embeds in a non-classical logic. A main issue in all this research is the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Simple Consistency of Naive Set Theory using Metavaluations.Ross T. Brady - 2014 - Journal of Philosophical Logic 43 (2-3):261-281.
    The main aim is to extend the range of logics which solve the set-theoretic paradoxes, over and above what was achieved by earlier work in the area. In doing this, the paper also provides a link between metacomplete logics and those that solve the paradoxes, by finally establishing that all M1-metacomplete logics can be used as a basis for naive set theory. In doing so, we manage to reach logics that are very close in their axiomatization to that of the (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Reply to Bjørdal.Zach Weber - 2011 - Review of Symbolic Logic 4 (1):109-113.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Relevance logic.Edwin Mares - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  • A revenge-immune solution to the semantic paradoxes.Hartry Field - 2003 - Journal of Philosophical Logic 32 (2):139-177.
    The paper offers a solution to the semantic paradoxes, one in which (1) we keep the unrestricted truth schema “True(A)↔A”, and (2) the object language can include its own metalanguage. Because of the first feature, classical logic must be restricted, but full classical reasoning applies in “ordinary” contexts, including standard set theory. The more general logic that replaces classical logic includes a principle of substitutivity of equivalents, which with the truth schema leads to the general intersubstitutivity of True(A) with A (...)
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • Notes on inconsistent set theory.Zach Weber - 2012 - In Francesco Berto, Edwin Mares, Koji Tanaka & Francesco Paoli (eds.), Paraconsistency: Logic and Applications. Dordrecht, Netherland: Springer. pp. 315--328.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (2 other versions)Logic: The Basics (2nd Edition).Jc Beall & Shay A. Logan - 2017 - Routledge.
    Logic: the Basics is an accessible introduction to the core philosophy topic of standard logic. Focussing on traditional Classical Logic the book deals with topics such as mathematical preliminaries, propositional logic, monadic quantified logic, polyadic quantified logic, and English and standard ‘symbolic transitions’. With exercises and sample answers throughout this thoroughly revised new edition not only comprehensively covers the core topics at introductory level but also gives the reader an idea of how they can take their knowledge further and the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Where the Paths Meet: Remarks on Truth and Paradox.Jc Beall - 2008 - Midwest Studies in Philosophy 32 (1):169-198.
    The study of truth is often seen as running on two separate paths: the nature path and the logic path. The former concerns metaphysical questions about the ‘nature’, if any, of truth. The latter concerns itself largely with logic, particularly logical issues arising from the truth-theoretic paradoxes. Where, if at all, do these two paths meet? It may seem, and it is all too often assumed, that they do not meet, or at best touch in only incidental ways. It is (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Depth relevance of some paraconsistent logics.Ross T. Brady - 1984 - Studia Logica 43 (1-2):63 - 73.
    The paper essentially shows that the paraconsistent logicDR satisfies the depth relevance condition. The systemDR is an extension of the systemDK of [7] and the non-triviality of a dialectical set theory based onDR has been shown in [3]. The depth relevance condition is a strengthened relevance condition, taking the form: If DR- AB thenA andB share a variable at the same depth, where the depth of an occurrence of a subformulaB in a formulaA is roughly the number of nested ''s (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Logic, Mathematics, Philosophy, Vintage Enthusiasms: Essays in Honour of John L. Bell.David DeVidi, Michael Hallett & Peter Clark (eds.) - 2011 - Dordrecht, Netherland: Springer.
    The volume includes twenty-five research papers presented as gifts to John L. Bell to celebrate his 60th birthday by colleagues, former students, friends and admirers. Like Bell’s own work, the contributions cross boundaries into several inter-related fields. The contributions are new work by highly respected figures, several of whom are among the key figures in their fields. Some examples: in foundations of maths and logic ; analytical philosophy, philosophy of science, philosophy of mathematics and decision theory and foundations of economics. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • What If? The Exploration of an Idea.Graham Priest - 2017 - Australasian Journal of Logic 14 (1).
    A crucial question here is what, exactly, the conditional in the naive truth/set comprehension principles is. In 'Logic of Paradox', I outlined two options. One is to take it to be the material conditional of the extensional paraconsistent logic LP. Call this "Strategy 1". LP is a relatively weak logic, however. In particular, the material conditional does not detach. The other strategy is to take it to be some detachable conditional. Call this "Strategy 2". The aim of the present essay (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • The Trivial Object and the Non-Uiviality of a Semantically Closed Theory with Descriptions.Graham Priest - 1998 - Journal of Applied Non-Classical Logics 8 (1-2):171-183.
    After indicating why this is needed, the paper proves a non-triviality result for paraconsistent theory containing arithmetic, naive truth and denotation predicates, and descriptions. The result is obtained by dualising a construction of Kroon. Its most notable feature is that there is a trivial object- one that has every property.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Saving the truth schema from paradox.Hartry Field - 2002 - Journal of Philosophical Logic 31 (1):1-27.
    The paper shows how we can add a truth predicate to arithmetic (or formalized syntactic theory), and keep the usual truth schema Tr( ) ↔ A (understood as the conjunction of Tr( ) → A and A → Tr( )). We also keep the full intersubstitutivity of Tr(>A>)) with A in all contexts, even inside of an →. Keeping these things requires a weakening of classical logic; I suggest a logic based on the strong Kleene truth tables, but with → (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • A model for the modern malaise.Robert K. Meyer & Adrian Abraham - 1984 - Philosophia 14 (1-2):25-40.
    Download  
     
    Export citation  
     
    Bookmark  
  • Boolean negation and all that.Graham Priest - 1990 - Journal of Philosophical Logic 19 (2):201 - 215.
    We have seen that proofs of soundness of (Boolean) DS, EFQ and of ABS — and hence the legitimation of these inferences — can be achieved only be appealing to the very form of reasoning in question. But this by no means implies that we have to fall back on classical reasoning willy-nilly. Many logical theories can provide the relevant boot-strapping. Decision between them has, therefore, to be made on other grounds. The grounds include the many criteria familiar from the (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Maudlin’s Truth and Paradox. [REVIEW]Hartry Field - 2006 - Philosophy and Phenomenological Research 73 (3):713–720.
    Tim Maudlin’s Truth and Paradox is terrific. In some sense its solution to the paradoxes is familiar—the book advocates an extension of what’s called the Kripke-Feferman theory (although the definition of validity it employs disguises this fact). Nonetheless, the perspective it casts on that solution is completely novel, and Maudlin uses this perspective to try to make the prima facie unattractive features of this solution seem palatable, indeed inescapable. Moreover, the book deals with many important issues that most writers on (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Precis of saving truth from paradox.Hartry Field - 2010 - Philosophical Studies 147 (3):415 - 420.
    Download  
     
    Export citation  
     
    Bookmark   2 citations