Switch to: References

Add citations

You must login to add citations.
  1. Editorial Introduction.R. A. Rynasiewicz - 2010 - Foundations of Physics 40 (4):333-334.
    Download  
     
    Export citation  
     
    Bookmark  
  • Modal semantics, modal dynamics and the problem of state preparation.Laura Ruetsche - 2003 - International Studies in the Philosophy of Science 17 (1):25 – 41.
    It has been suggested that the Modal Interpretation of Quantum Mechanics (QM) is "incomplete" if it lacks a dynamics for possessed values. I argue that this is only one of two possible attitudes one might adopt toward a Modal Interpretation without dynamics. According to the other attitude, such an interpretation is a complete interpretation of QM as standardly formulated, an interpretation whose innovation is to attempt to make sense of the quantum realm without the expedient of novel physics. Then I (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Quantum principles in psychology: The debate, the evidence, and the future.Emmanuel M. Pothos & Jerome R. Busemeyer - 2013 - Behavioral and Brain Sciences 36 (3):310-327.
    The attempt to employ quantum principles for modeling cognition has enabled the introduction of several new concepts in psychology, such as the uncertainty principle, incompatibility, entanglement, and superposition. For many commentators, this is an exciting opportunity to question existing formal frameworks (notably classical probability theory) and explore what is to be gained by employing these novel conceptual tools. This is not to say that major empirical challenges are not there. For example, can we definitely prove the necessity for quantum, as (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Can quantum probability provide a new direction for cognitive modeling?Emmanuel M. Pothos & Jerome R. Busemeyer - 2013 - Behavioral and Brain Sciences 36 (3):255-274.
    Classical (Bayesian) probability (CP) theory has led to an influential research tradition for modeling cognitive processes. Cognitive scientists have been trained to work with CP principles for so long that it is hard even to imagine alternative ways to formalize probabilities. However, in physics, quantum probability (QP) theory has been the dominant probabilistic approach for nearly 100 years. Could QP theory provide us with any advantages in cognitive modeling as well? Note first that both CP and QP theory share the (...)
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • Betting on the outcomes of measurements: A bayesian theory of quantum probability.Itamar Pitowsky - 2002 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 34 (3):395-414.
    We develop a systematic approach to quantum probability as a theory of rational betting in quantum gambles. In these games of chance, the agent is betting in advance on the outcomes of several (finitely many) incompatible measurements. One of the measurements is subsequently chosen and performed and the money placed on the other measurements is returned to the agent. We show how the rules of rational betting imply all the interesting features of quantum probability, even in such finite gambles. These (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Why Quantum Measurements Yield Single Values.H. S. Perlman - 2021 - Foundations of Physics 51 (1):1-6.
    It is shown that the Born Rule probabilities, i.e. the squares of the moduli of the coefficients in a pure state superposition, refer to mutually exclusive events consequent on measurement. It is also shown that the eigenstates in a pure state superposition are not mutually exclusive events. If the Born Rule is to be retained as the fundamental interpretative postulate of quantum mechanics then it follows, firstly, that the probabilities necessarily refer not to the eigenstates but to the eigenvalues to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • “The Postilion’s Horn Sounds”: A Complementarity Approach to the Phenomenology of Sound-Consciousness?Paolo Palmieri - 2014 - Husserl Studies 30 (2):129-151.
    In the phenomenology of the consciousness of internal time, Edmund Husserl has frequent recourse to sound and melody as illustrations of the processes that give rise to immanent temporal objects. In Husserl’s analysis, there is a philosophically pregnant tension between the geometrical diagrams representing multiple dimensions of immanent time and his intuition that time-points might be no more than fictions leading to absurdities. In this paper, I will address this tension in order to motivate a complementarity approach to temporal objects (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Reconstructing Bohr’s Reply to EPR in Algebraic Quantum Theory.Masanao Ozawa & Yuichiro Kitajima - 2012 - Foundations of Physics 42 (4):475-487.
    Halvorson and Clifton have given a mathematical reconstruction of Bohr’s reply to Einstein, Podolsky and Rosen (EPR), and argued that this reply is dictated by the two requirements of classicality and objectivity for the description of experimental data, by proving consistency between their objectivity requirement and a contextualized version of the EPR reality criterion which had been introduced by Howard in his earlier analysis of Bohr’s reply. In the present paper, we generalize the above consistency theorem, with a rather elementary (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the Classification Between $$psi$$ ψ -Ontic and $$psi$$ ψ -Epistemic Ontological Models.Andrea Oldofredi & Cristian López - 2020 - Foundations of Physics 50 (11):1315-1345.
    Harrigan and Spekkens provided a categorization of quantum ontological models classifying them as \-ontic or \-epistemic if the quantum state \ describes respectively either a physical reality or mere observers’ knowledge. Moreover, they claimed that Einstein—who was a supporter of the statistical interpretation of quantum mechanics—endorsed an epistemic view of \ In this essay we critically assess such a classification and some of its consequences by proposing a twofold argumentation. Firstly, we show that Harrigan and Spekkens’ categorization implicitly assumes that (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Feminist Philosophy of Science.Lynn Hankinson Nelson - 2002 - In Peter Machamer & Michael Silberstein (eds.), The Blackwell Guide to the Philosophy of Science. Oxford, UK: Blackwell. pp. 312–331.
    This chapter contains sections titled: Highlights of Past Literature Current Work Future Work.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Flea on Schrödinger's Cat.P. N. & Robin Reuvers - 2013 - Foundations of Physics 43 (3):373-407.
    We propose a technical reformulation of the measurement problem of quantum mechanics, which is based on the postulate that the final state of a measurement is classical; this accords with experimental practice as well as with Bohr’s views. Unlike the usual formulation (in which the post-measurement state is a unit vector in Hilbert space), our version actually opens the possibility of admitting a purely technical solution within the confines of conventional quantum theory (as opposed to solutions that either modify this (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A branching space-times view on quantum error correction.Thomas Müller - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (3):635-652.
    In this paper we describe some first steps for bringing the framework of branching space-times to bear on quantum information theory. Our main application is quantum error correction. It is shown that branching space-times offers a new perspective on quantum error correction: as a supplement to the orthodox slogan, ``fight entanglement with entanglement'', we offer the new slogan, ``fight indeterminism with indeterminism''.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Van Fraassen and Ruetsche on preparation and measurement.Bradley Monton - 1999 - Philosophy of Science 66 (3):91.
    Ruetsche (1996) has argued that van Fraassen's (1991) Copenhagen Variant of the Modal Interpretation (CVMI) gives unsatisfactory accounts of measurement and of state preparation. I defend the CVMI against Ruetsche's first argument by using decoherence to show that the CVMI does not need to account for the measurement scenario which Ruetsche poses. I then show, however, that there is a problem concerning preparation, and the problem is more serious than the one Ruetsche focuses on. The CVMI makes no substantive predictions (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Funny business in branching space-times: infinite modal correlations.Thomas Muller, Nuel Belnap & Kohei Kishida - 2008 - Synthese 164 (1):141-159.
    The theory of branching space-times is designed as a rigorous framework for modelling indeterminism in a relativistically sound way. In that framework there is room for "funny business", i.e., modal correlations such as occur through quantummechanical entanglement. This paper extends previous work by Belnap on notions of "funny business". We provide two generalized definitions of "funny business". Combinatorial funny business can be characterized as "absence of prima facie consistent scenarios", while explanatory funny business characterizes situations in which no localized explanation (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • The problem of optical isomerism and the interpretation of quantum mechanics.Juan Camilo Martínez González - 2019 - Foundations of Chemistry 21 (1):97-107.
    When young Kant meditated upon the distinction between his right and left hands, he could not foresee that the problem of incongruent counterparts would revive in the twentieth century under a new form. In the early days of quantum chemistry, Friedrich Hund developed the so-called Hund paradox that arises from the supposed inability of quantum mechanics to account for the difference between enantiomers. In this paper, the paradox is expressed as a case of quantum measurement, stressing that decoherence does not (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Isomerism and decoherence.Juan Camilo Martínez González, Olimpia Lombardi & Sebastian Fortin - 2016 - Foundations of Chemistry 18 (3):225-240.
    In the present paper we address the problem of optical isomerism embodied in the socalled “Hund’s paradox”, which points to the difficulty to account for chirality by means of quantum mechanics. In particular, we explain the answer to the problem proposed by the theory of decoherence. The purpose of this article is to challenge this answer on the basis of a conceptual analysis of the phenomenon of decoherence, that reveals the limitations of the theory of decoherence to solve the difficulties (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • How Different Interpretations of Quantum Mechanics can Enrich Each Other: The Case of the Relational Quantum Mechanics and the Modal-Hamiltonian Interpretation.Olimpia Lombardi & Juan Sebastián Ardenghi - 2022 - Foundations of Physics 52 (3):1-21.
    In the literature on the interpretation of quantum mechanics, not many works attempt to adopt a proactive perspective aimed at seeing how different interpretations can enrich each other through a productive dialogue. In particular, few proposals have been devised to show that different approaches can be clarified by comparing them, and can even complement each other, improving or leading to a more fertile overall approach. The purpose of this paper is framed within this perspective of complementation and mutual enrichment. In (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • What is it like to be Schrodinger's cat?P. J. Lewis - 2000 - Analysis 60 (1):22-29.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Aplicaciones intencionales de la mecánica cuántica.Mariano Lastiri - 2012 - Agora 31 (2):271-285.
    Este trabajo presenta algunas discusiones preliminares a una reconstrucción de la mecánicacuántica desde una perspectiva estructuralista. Intento responder a la pregunta por lostérminos MQ- no teóricos, es decir, qué magnitudes pueden ser medidas con independenciade la ecuación de Schrödinger y de la regla de Born. Uno de los aspectos relevantes que puedeser analizado una vez que se ha respondido a esta pregunta es el problema de la medición.Dado que el problema de la medición está directamente relacionado con el carácter linealde (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • When champions meet: Rethinking the Bohr–Einstein debate.Nicolaas P. Landsman - 2005 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 37 (1):212-242.
    Einstein's philosophy of physics (as clarified by Fine, Howard, and Held) was predicated on his Trennungsprinzip, a combination of separability and locality, without which he believed objectification, and thereby "physical thought" and "physical laws", to be impossible. Bohr's philosophy (as elucidated by Hooker, Scheibe, Folse, Howard, Held, and others), on the other hand, was grounded in a seemingly different doctrine about the possibility of objective knowledge, namely the necessity of classical concepts. In fact, it follows from Raggio's Theorem in algebraic (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Randomness? What Randomness?Klaas Landsman - 2020 - Foundations of Physics 50 (2):61-104.
    This is a review of the issue of randomness in quantum mechanics, with special emphasis on its ambiguity; for example, randomness has different antipodal relationships to determinism, computability, and compressibility. Following a philosophical discussion of randomness in general, I argue that deterministic interpretations of quantum mechanics are strictly speaking incompatible with the Born rule. I also stress the role of outliers, i.e. measurement outcomes that are not 1-random. Although these occur with low probability, their very existence implies that the no-signaling (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Bohmian Mechanics is Not Deterministic.Klaas Landsman - 2022 - Foundations of Physics 52 (4):1-17.
    I argue that Bohmian mechanics cannot reasonably be claimed to be a deterministic theory. If one assumes the “quantum equilibrium distribution” provided by the wave function of the universe, Bohmian mechanics requires an external random oracle in order to describe the algorithmic randomness properties of typical outcome sequences of long runs of repeated identical experiments. This oracle lies beyond the scope of Bohmian mechanics, including the impossibility of explaining the randomness property in question from “random” initial conditions. Thus the advantages (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Flea on Schrödinger’s Cat.Np Klaas Landsman & Robin Reuvers - 2013 - Foundations of Physics 43 (3):373-407.
    We propose a technical reformulation of the measurement problem of quantum mechanics, which is based on the postulate that the final state of a measurement is classical; this accords with experimental practice as well as with Bohr’s views. Unlike the usual formulation (in which the post-measurement state is a unit vector in Hilbert space), our version actually opens the possibility of admitting a purely technical solution within the confines of conventional quantum theory (as opposed to solutions that either modify this (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The Conceptual Basis and Empirical Grounds of Ontic Structural Realism存在的構造実在論の概念的基礎と経験的根拠存在的構造実在論の概念的基礎と経験的根拠.Naoaki Kitamura & Kohei Morita - 2019 - Kagaku Tetsugaku 52 (1):1-22.
    Download  
     
    Export citation  
     
    Bookmark  
  • Weak values and consistent histories in quantum theory.Ruth Kastner - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 35 (1):57-71.
    A relation is obtained between weak values of quantum observables and the consistency criterion for histories of quantum events. It is shown that “strange” weak values for projection operators always correspond to inconsistent families of histories. It is argued that using the ABL rule to obtain probabilities for counterfactual measurements corresponding to those strange weak values gives inconsistent results. This problem is shown to be remedied by using the conditional weight, or pseudo-probability, obtained from the multiple-time application of Lüders’ Rule. (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • ‘Einselection’ of pointer observables: The new H-theorem?Ruth E. Kastner - 2014 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 48 (1):56-58.
    In attempting to derive irreversible macroscopic thermodynamics from reversible microscopic dynamics, Boltzmann inadvertently smuggled in a premise that assumed the very irreversibility he was trying to prove: ‘molecular chaos.’ The program of ‘Einselection’ within Everettian approaches faces a similar ‘Loschmidt’s Paradox’: the universe, according to the Everettian picture, is a closed system obeying only unitary dynamics, and it therefore contains no distinguishable environmental subsystems with the necessary ‘phase randomness’ to effect einselection of a pointer observable. The theoretically unjustified assumption of (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Demystifying Weak Measurements.Ruth Kastner - 2017 - Foundations of Physics 47 (5):697-707.
    A large literature has grown up around the proposed use of 'weak measurements' to allegedly provide information about hidden ontological features of quantum systems. This paper attempts to clarify the fact that 'weak measurements' are simply strong measurements on one member of an entangled pair, and that all such measurements thus effect complete disentanglement of the pair. The only thing 'weak' about them is that the correlation established via the entanglement does not correspond to eigenstates of the 'weakly measured observable' (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Algebraic Structures of Mathematical Foundations.Robert Murray Jones - 2018 - Open Journal of Philosophy 8 (4):401-407.
    Download  
     
    Export citation  
     
    Bookmark  
  • Algebraic Structures of Mathematical Foundations.Robert Murray Jones - 2020 - Open Journal of Philosophy 10 (1):137-142.
    Download  
     
    Export citation  
     
    Bookmark  
  • Abstract Geometry and Its Applications in Quantum Mechanics.Robert Murray Jones - 2020 - Open Journal of Philosophy 10 (4):423-426.
    Download  
     
    Export citation  
     
    Bookmark  
  • Relativistic Invariance and Modal Interpretations.John Earman & Laura Ruetsche - 2005 - Philosophy of Science 72 (4):557-583.
    A number of arguments have been given to show that the modal interpretation of ordinary nonrelativistic quantum mechanics cannot be consistently extended to the relativistic setting. We find these arguments inconclusive. However, there is a prima facie reason to think that a tension exists between the modal interpretation and relativistic invariance; namely, the best candidate for a modal interpretation adapted to relativistic quantum field theory, a prescription due to Rob Clifton, comes out trivial when applied to a number of systems (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Quantum Unsharpness, Potentiality, and Reality.Gregg Jaeger - 2019 - Foundations of Physics 49 (6):663-676.
    Paul Busch argued that the positive operator measure, a generalization of the standard quantum observable, enables a consistent notion of unsharp reality based on a quantifiable degree of reality whereby systems can possess generalized properties jointly, whereas related sharp properties cannot be so possessed. Here, the work leading up to the formalization of this notion to which he made great contributions is reviewed and explicated in relation to Heisenberg’s notions of potentiality and actuality. The notion of unsharp reality is then (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Quantum Measurement Problem and Cluster Separability.P. Hájíček - 2011 - Foundations of Physics 41 (4):640-666.
    A modified Beltrametti-Cassinelli-Lahti model of the measurement apparatus that satisfies both the probability reproducibility condition and the objectification requirement is constructed. Only measurements on microsystems are considered. The cluster separability forms a basis for the first working hypothesis: the current version of quantum mechanics leaves open what happens to systems when they change their separation status. New rules that close this gap can therefore be added without disturbing the logic of quantum mechanics. The second working hypothesis is that registration apparatuses (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Quantum Model of Classical Mechanics: Maximum Entropy Packets. [REVIEW]P. Hájíček - 2009 - Foundations of Physics 39 (9):1072-1096.
    In a previous paper, a statistical method of constructing quantum models of classical properties has been described. The present paper concludes the description by turning to classical mechanics. The quantum states that maximize entropy for given averages and variances of coordinates and momenta are called ME packets. They generalize the Gaussian wave packets. A non-trivial extension of the partition-function method of probability calculus to quantum mechanics is given. Non-commutativity of quantum variables limits its usefulness. Still, the general form of the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Intrinsic Properties of Quantum Systems.P. Hájíček & J. Tolar - 2009 - Foundations of Physics 39 (5):411-432.
    A new realist interpretation of quantum mechanics is introduced. Quantum systems are shown to have two kinds of properties: the usual ones described by values of quantum observables, which are called extrinsic, and those that can be attributed to individual quantum systems without violating standard quantum mechanics, which are called intrinsic. The intrinsic properties are classified into structural and conditional. A systematic and self-consistent account is given. Much more statements become meaningful than any version of Copenhagen interpretation would allow. A (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Quantum logic as a fragment of independence-friendly logic.Jaakko Hintikka - 2002 - Journal of Philosophical Logic 31 (3):197-209.
    The working assumption of this paper is that noncommuting variables are irreducibly interdependent. The logic of such dependence relations is the author's independence-friendly (IF) logic, extended by adding to it sentence-initial contradictory negation ¬ over and above the dual (strong) negation ∼. Then in a Hilbert space ∼ turns out to express orthocomplementation. This can be extended to any logical space, which makes it possible to define the dimension of a logical space. The received Birkhoff and von Neumann "quantum logic" (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Limits of Common Cause Approach to EPR Correlation.Katsuaki Higashi - 2008 - Foundations of Physics 38 (7):591-609.
    It is often argued that no local common cause models of EPR correlation exist. However, Szabó and Rédei pointed out that such arguments have the tacit assumption that plural correlations have the same common causes. Furthermore, Szabó showed that for EPR correlation a local common cause model in his sense exists. One of his requirements is that common cause events are statistically independent of apparatus settings on each side. However, as Szabó knows, to meet this requirement does not entail that (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Hardy's Paradox as a No-go Result for Probabilistic Hidden Variables確率的隠れた変数の不可能性定理としてのハーディーのパラドクス.Katsuaki Higashi - 2019 - Journal of the Japan Association for Philosophy of Science 47 (1):35-46.
    Download  
     
    Export citation  
     
    Bookmark  
  • Hardy Relations and Common Cause.Katsuaki Higashi - 2020 - Foundations of Physics 50 (11):1382-1397.
    Some researchers argued that in the non-existence proof of hidden variables, the existence of a common common-cause of multiple correlations is tacitly assumed and that the assumption is unreasonably strong. According to their idea, it is sufficient if the separate common-cause of each correlation exists. However, for such an idea, various no-go results are already known. Recently, Higashi showed that there exists no local separate common-cause model for the correlations that appear in Hardy’s famous argument. In this paper, I give (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A no-go result on common cause approaches via Hardy relations.Katsuaki Higashi - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 67:12-19.
    According to a conventional view, there exists no common-cause model of quantum correlations satisfying locality requirements. In fact, Bell's inequality is derived from some locality conditions and the assumption that the common cause exists, and the violation of the inequality has been experimentally verified. On the other hand, some researchers argue that in the derivation of the inequality the existence of a common common-cause for multiple correlations is implicitly assumed, and that the assumption is unreasonably strong. According to their idea, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On EPR-type Entanglement in the Experiments of Scully et al. II. Insight in the Real Random Delayed-choice Erasure Experiment.F. Herbut - 2010 - Foundations of Physics 40 (3):301-312.
    It was pointed out in the first part of this study (Herbut in Found. Phys. 38:1046–1064, 2008) that EPR-type entanglement is defined by the possibility of performing any of two mutually incompatible distant, i.e., direct-interaction-free, measurements. They go together under the term ‘EPR-type disentanglement’. In this second part, quantum-mechanical insight is gained in the real random delayed-choice erasure experiment of Kim et al. (Phys. Rev. Lett. 84:1–5, 2000) by a relative-reality-of-unitarily-evolving-state (RRUES) approach (explained in the first part). Finally, it is (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Quantum decoherence and the approach to equilibrium.Meir Hemmo & Orly Shenker - 2003 - Philosophy of Science 70 (2):330-358.
    We discuss a recent proposal by Albert (1994a; 1994b; 2000, ch. 7) to recover thermodynamics on a purely dynamical basis, using the quantum theory of the collapse of the wave function by Ghirardi, Rimini, and Weber (1986). We propose an alternative way to explain thermodynamics within no-collapse interpretations of quantum mechanics. Our approach relies on the standard quantum mechanical models of environmental decoherence of open systems (e.g., Joos and Zeh 1985; Zurek and Paz 1994). This paper presents the two approaches (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Quantum Theory: A Pragmatist Approach.Richard Healey - 2012 - British Journal for the Philosophy of Science 63 (4):729-771.
    While its applications have made quantum theory arguably the most successful theory in physics, its interpretation continues to be the subject of lively debate within the community of physicists and philosophers concerned with conceptual foundations. This situation poses a problem for a pragmatist for whom meaning derives from use. While disputes about how to use quantum theory have arisen from time to time, they have typically been quickly resolved, and consensus reached, within the relevant scientific sub-community. Yet rival accounts of (...)
    Download  
     
    Export citation  
     
    Bookmark   75 citations  
  • Observation and Quantum Objectivity.Richard Healey - 2013 - Philosophy of Science 80 (3):434-453.
    The paradox of Wigner’s friend challenges the objectivity of quantum theory. A pragmatist interpretation can meet this challenge by judicious appeal to decoherence. Quantum theory provides situated agents with resources for predicting and explaining what happens in the physical world—not conscious observations of it. Even in bizarre Wigner’s friend scenarios, differently situated agents agree on the objective content of physical magnitude statements while, normally, quantum Darwinism permits agents equal observational access to their truth. Quantum theory has nothing to say about (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On the nature of continuous physical quantities in classical and quantum mechanics.Hans Halvorson - 2001 - Journal of Philosophical Logic 30 (1):27-50.
    Within the traditional Hilbert space formalism of quantum mechanics, it is not possible to describe a particle as possessing, simultaneously, a sharp position value and a sharp momentum value. Is it possible, though, to describe a particle as possessing just a sharp position value (or just a sharp momentum value)? Some, such as Teller, have thought that the answer to this question is No - that the status of individual continuous quantities is very different in quantum mechanics than in classical (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Experimental metaphysics2: The double standard in the quantum-information approach to the foundations of quantum theory.Amit Hagar - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (4):906-919.
    Among the alternatives of non-relativistic quantum mechanics (NRQM) there are those that give different predictions than quantum mechanics in yet-untested circumstances, while remaining compatible with current empirical findings. In order to test these predictions, one must isolate one’s system from environmental induced decoherence, which, on the standard view of NRQM, is the dynamical mechanism that is responsible for the ‘apparent’ collapse in open quantum systems. But while recent advances in condensed-matter physics may lead in the near future to experimental setups (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Explaining the Unobserved—Why Quantum Mechanics Ain’t Only About Information.Amit Hagar & Meir Hemmo - 2006 - Foundations of Physics 36 (9):1295-1234.
    A remarkable theorem by Clifton, Bub and Halvorson (2003) (CBH) characterizes quantum theory in terms of information--theoretic principles. According to Bub (2004, 2005) the philosophical significance of the theorem is that quantum theory should be regarded as a ``principle'' theory about (quantum) information rather than a ``constructive'' theory about the dynamics of quantum systems. Here we criticize Bub's principle approach arguing that if the mathematical formalism of quantum mechanics remains intact then there is no escape route from solving the measurement (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Active Fault‐Tolerant Quantum Error Correction: The Curse of the Open System.Amit Hagar - 2009 - Philosophy of Science 76 (4):506-535.
    Relying on the universality of quantum mechanics and on recent results known as the “threshold theorems,” quantum information scientists deem the question of the feasibility of large‐scale, fault‐tolerant, and computationally superior quantum computers as purely technological. Reconstructing this question in statistical mechanical terms, this article suggests otherwise by questioning the physical significance of the threshold theorems. The skepticism it advances is neither too strong (hence is consistent with the universality of quantum mechanics) nor too weak (hence is independent of technological (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A philosopher looks at quantum information theory.Amit Hagar - 2003 - Philosophy of Science 70 (4):752-775.
    Recent suggestions to supply quantum mechanics (QM) with realistic foundations by reformulating it in light of quantum information theory (QIT) are examined and are found wanting by pointing to a basic conceptual problem that QIT itself ignores, namely, the measurement problem. Since one cannot ignore the measurement problem and at the same time pretend to be a realist, as they stand, the suggestions to reformulate QM in light of QIT are nothing but instrumentalism in disguise.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Isomorphism between the Peres and Penrose Proofs of the BKS Theorem in Three Dimensions.Elizabeth Gould & P. K. Aravind - 2010 - Foundations of Physics 40 (8):1096-1101.
    It is shown that the 33 complex rays in three dimensions used by Penrose to prove the Bell-Kochen-Specker theorem have the same orthogonality relations as the 33 real rays of Peres, and therefore provide an isomorphic proof of the theorem. It is further shown that the Peres and Penrose rays are just two members of a continuous three-parameter family of unitarily inequivalent rays that prove the theorem.
    Download  
     
    Export citation  
     
    Bookmark