Switch to: References

Citations of:

Social Constructivism as a Philosophy of Mathematics

Albany, NY, USA: State University of New York Press (1997)

Add citations

You must login to add citations.
  1. Naturalizing Badiou: mathematical ontology and structural realism.Fabio Gironi - 2014 - New York: Palgrave-Macmillan.
    This thesis offers a naturalist revision of Alain Badiou’s philosophy. This goal is pursued through an encounter of Badiou’s mathematical ontology and theory of truth with contemporary trends in philosophy of mathematics and philosophy of science. I take issue with Badiou’s inability to elucidate the link between the empirical and the ontological, and his residual reliance on a Heideggerian project of fundamental ontology, which undermines his own immanentist principles. I will argue for both a bottom-up naturalisation of Badiou’s philosophical approach (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Empirical regularities in Wittgenstein's philosophy of mathematics.Mark Steiner - 2009 - Philosophia Mathematica 17 (1):1-34.
    During the course of about ten years, Wittgenstein revised some of his most basic views in philosophy of mathematics, for example that a mathematical theorem can have only one proof. This essay argues that these changes are rooted in his growing belief that mathematical theorems are ‘internally’ connected to their canonical applications, i.e. , that mathematical theorems are ‘hardened’ empirical regularities, upon which the former are supervenient. The central role Wittgenstein increasingly assigns to empirical regularities had profound implications for all (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Phenomenology and mathematical practice.Mary Leng - 2002 - Philosophia Mathematica 10 (1):3-14.
    A phenomenological approach to mathematical practice is sketched out, and some problems with this sort of approach are considered. The approach outlined takes mathematical practices as its data, and seeks to provide an empirically adequate philosophy of mathematics based on observation of these practices. Some observations are presented, based on two case studies of some research into the classification of C*-algebras. It is suggested that an anti-realist account of mathematics could be developed on the basis of these and other studies, (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Early Years Mathematics Education: the Missing Link.Boris Čulina - 2024 - Philosophy of Mathematics Education Journal 35 (41).
    In this article, modern standards of early years mathematics education are criticized and a proposal for change is presented. Today's early years mathematics education standards rest on a view of mathematics that became obsolete already at the end of the 19th century while the spirit of children's mathematics is precisely the spirit of modern mathematics. The proposal for change is not a return to the “new mathematics” movement, but something different.
    Download  
     
    Export citation  
     
    Bookmark  
  • Validations of proofs considered as texts: Can undergraduates tell whether an argument proves a theorem?Annie Selden - 2003 - Journal for Mathematics Education Research 34 (1):4-36.
    We report on an exploratory study of the way eight mid-level undergraduate mathematics majors read and reflected on four student-generated arguments purported to be proofs of a single theorem. The results suggest that mid-level undergraduates tend to focus on surface features of such arguments and that their ability to determine whether arguments are proofs is very limited -- perhaps more so than either they or their instructors recognize. We begin by discussing arguments (purported proofs) regarded as texts and validations of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Fitting Feelings and Elegant Proofs: On the Psychology of Aesthetic Evaluation in Mathematics.Cain Todd - 2017 - Philosophia Mathematica:nkx007.
    ABSTRACT This paper explores the role of aesthetic judgements in mathematics by focussing on the relationship between the epistemic and aesthetic criteria employed in such judgements, and on the nature of the psychological experiences underpinning them. I claim that aesthetic judgements in mathematics are plausibly understood as expressions of what I will call ‘aesthetic-epistemic feelings’ that serve a genuine cognitive and epistemic function. I will then propose a naturalistic account of these feelings in terms of sub-personal processes of representing and (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Neuropragmatism, knowledge, and pragmatic naturalism.John Shook - 2013 - Human Affairs 23 (4):576-593.
    Neuropragmatism is a research program taking sciences about cognitive development and learning methods most seriously, in order to reevaluate and reformulate philosophical issues. Knowledge, consciousness, and reason are among the crucial philosophical issues directly affected. Pragmatism in general has allied with the science-affirming philosophy of naturalism. Naturalism is perennially tested by challenges questioning its ability to accommodate and account for knowledge, consciousness, and reason. Neuropragmatism is in a good position to evaluate those challenges. Some ways to defuse them are suggested (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Towards a new epistemology of mathematics.Bernd Buldt, Benedikt Löwe & Thomas Müller - 2008 - Erkenntnis 68 (3):309 - 329.
    In this introduction we discuss the motivation behind the workshop “Towards a New Epistemology of Mathematics” of which this special issue constitutes the proceedings. We elaborate on historical and empirical aspects of the desired new epistemology, connect it to the public image of mathematics, and give a summary and an introduction to the contributions to this issue.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • What is mathematics for the youngest?Boris Culina - 2022 - Uzdanica 19 (special issue):199-219.
    While there are satisfactory answers to the question “How should we teach children mathematics?”, there are no satisfactory answers to the question “What mathematics should we teach children?”. This paper provides an answer to the last question for preschool children (early childhood), although the answer is also applicable to older children. This answer, together with an appropriate methodology on how to teach mathematics, gives a clear conception of the place of mathematics in the children’s world and our role in helping (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Social constructivism in mathematics? The promise and shortcomings of Julian Cole’s institutional account.Jenni Rytilä - 2021 - Synthese 199 (3-4):11517-11540.
    The core idea of social constructivism in mathematics is that mathematical entities are social constructs that exist in virtue of social practices, similar to more familiar social entities like institutions and money. Julian C. Cole has presented an institutional version of social constructivism about mathematics based on John Searle’s theory of the construction of the social reality. In this paper, I consider what merits social constructivism has and examine how well Cole’s institutional account meets the challenge of accounting for the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Fitting Feelings and Elegant Proofs: On the Psychology of Aesthetic Evaluation in Mathematics.Cain Todd - 2018 - Philosophia Mathematica 26 (2):211-233.
    This paper explores the role of aesthetic judgements in mathematics by focussing on the relationship between the epistemic and aesthetic criteria employed in such judgements, and on the nature of the psychological experiences underpinning them. I claim that aesthetic judgements in mathematics are plausibly understood as expressions of what I will call ‘aesthetic-epistemic feelings’ that serve a genuine cognitive and epistemic function. I will then propose a naturalistic account of these feelings in terms of sub-personal processes of representing and assessing (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Mathematical symbols as epistemic actions.Johan De Smedt & Helen De Cruz - 2013 - Synthese 190 (1):3-19.
    Recent experimental evidence from developmental psychology and cognitive neuroscience indicates that humans are equipped with unlearned elementary mathematical skills. However, formal mathematics has properties that cannot be reduced to these elementary cognitive capacities. The question then arises how human beings cognitively deal with more advanced mathematical ideas. This paper draws on the extended mind thesis to suggest that mathematical symbols enable us to delegate some mathematical operations to the external environment. In this view, mathematical symbols are not only used to (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Mathematical models and reality: A constructivist perspective. [REVIEW]Christian Hennig - 2010 - Foundations of Science 15 (1):29-48.
    To explore the relation between mathematical models and reality, four different domains of reality are distinguished: observer-independent reality, personal reality, social reality and mathematical/formal reality. The concepts of personal and social reality are strongly inspired by constructivist ideas. Mathematical reality is social as well, but constructed as an autonomous system in order to make absolute agreement possible. The essential problem of mathematical modelling is that within mathematics there is agreement about ‘truth’, but the assignment of mathematics to informal reality is (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Last bastion of reason. [REVIEW]James Franklin - 2000 - New Criterion 18 (9):74-78.
    Attacks the irrationalism of Lakatos's Proofs and Refutations and defends mathematics as a "last bastion" of reason against postmodernist and deconstructionist currents.
    Download  
     
    Export citation  
     
    Bookmark  
  • A Note on the Relation Between Formal and Informal Proof.Jörgen Sjögren - 2010 - Acta Analytica 25 (4):447-458.
    Using Carnap’s concept explication, we propose a theory of concept formation in mathematics. This theory is then applied to the problem of how to understand the relation between the concepts formal proof and informal, mathematical proof.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Mathematical naturalism: Origins, guises, and prospects. [REVIEW]Bart Van Kerkhove - 2006 - Foundations of Science 11 (1-2):5-39.
    During the first half of the twentieth century, mainstream answers to the foundational crisis, mainly triggered by Russell and Gödel, remained largely perfectibilist in nature. Along with a general naturalist wave in the philosophy of science, during the second half of that century, this idealist picture was finally challenged and traded in for more realist ones. Next to the necessary preliminaries, the present paper proposes a structured view of various philosophical accounts of mathematics indebted to this general idea, laying the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Instructions and constructions in set theory proofs.Keith Weber - 2023 - Synthese 202 (2):1-17.
    Traditional models of mathematical proof describe proofs as sequences of assertion where each assertion is a claim about mathematical objects. However, Tanswell observed that in practice, many proofs do not follow these models. Proofs often contain imperatives, and other instructions for the reader to perform mathematical actions. The purpose of this paper is to examine the role of instructions in proofs by systematically analyzing how instructions are used in Kunen’s Set theory: An introduction to independence proofs, a widely used graduate (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Philosophical Underpinnings of Social Constructionist Discourse Analysis.Marek Gralewski - 2011 - Lodz Papers in Pragmatics 7 (1):155-171.
    The Philosophical Underpinnings of Social Constructionist Discourse Analysis Although discourse analysis emerges as a multi-faceted research method reflecting various schools of thought, disciplines and approaches, it is possible to pinpoint some meta-theoretical issues or fundamental assumptions common for most of them. This article aims to investigate different philosophical aspects and theoretical foundations that inform discourse analysis, such as the interplay between epistemological and ontological dimensions or the definition of language itself. Because space does not allow an in-depth discussion of all (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Formal Ontology and Mathematics. A Case Study on the Identity of Proofs.Matteo Bianchetti & Giorgio Venturi - 2023 - Topoi 42 (1):307-321.
    We propose a novel, ontological approach to studying mathematical propositions and proofs. By “ontological approach” we refer to the study of the categories of beings or concepts that, in their practice, mathematicians isolate as fruitful for the advancement of their scientific activity (like discovering and proving theorems, formulating conjectures, and providing explanations). We do so by developing what we call a “formal ontology” of proofs using semantic modeling tools (like RDF and OWL) developed by the computer science community. In this (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Assessing Levels of Epistemological Understanding: The Standardized Epistemological Understanding Assessment.Natalia Żyluk, Karolina Karpe, Mikołaj Michta, Weronika Potok, Katarzyna Paluszkiewicz & Mariusz Urbański - 2018 - Topoi 37 (1):129-141.
    This article describes the process of modification and Polish adaptation of an instrument constructed to assess the level of epistemological understanding. The original tool was developed by Kuhn et al. in order to account for transitions between, and coordination of, subjective and objective dimensions of knowing across different judgement domains. Our aim was to improve its psychometric properties. The main changes included extending the list of test items, a new administration procedure and the introduction of a quantitative scoring method. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Theological Underpinnings of the Modern Philosophy of Mathematics.Vladislav Shaposhnikov - 2016 - Studies in Logic, Grammar and Rhetoric 44 (1):147-168.
    The study is focused on the relation between theology and mathematics in the situation of increasing secularization. My main concern in the second part of this paper is the early-twentieth-century foundational crisis of mathematics. The hypothesis that pure mathematics partially fulfilled the functions of theology at that time is tested on the views of the leading figures of the three main foundationalist programs: Russell, Hilbert and Brouwer.
    Download  
     
    Export citation  
     
    Bookmark  
  • Problems with Fallibilism as a Philosophy of Mathematics Education.Stuart Rowlands, Ted Graham & John Berry - 2011 - Science & Education 20 (7-8):625-654.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Where the Sidewalk Ends: The Limits of Social Constructionism.David Peterson - 2012 - Journal for the Theory of Social Behaviour 42 (4):465-484.
    The sociology of knowledge is a heterogeneous set of theories which generally focuses on the social origins of meaning. Strong arguments, epitomized by Durkheim's late work, have hypothesized that the very concepts our minds use to structure experience are constructed through social processes. This view has come under attack from theorists influenced by recent work in developmental psychology that has demonstrated some awareness of these categories in pre-socialized infants. However, further studies have shown that the innate abilities infants display differ (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • James Franklin: What Science Knows and How it Knows it.Michael R. Matthews - 2010 - Science & Education 19 (10):1019-1027.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Mathematics as an Empirical Phenomenon, Subject to Modeling.Reuben Hersh - 2017 - Journal of the Indian Council of Philosophical Research 34 (2):331-342.
    Among the universal attributes of homo sapiens, several have become established as special fields of study—language, art and music, religion, and political economy. But mathematics, another universal attribute of our species, is still modeled separately by logicians, historians, neuroscientists, and others. Could it be integrated into “mathematics studies,” a coherent, many-faceted branch of empirical science? Could philosophers facilitate such a unification? Some philosophers of mathematics identify themselves with “positions” on the nature of mathematics. Those “positions” could more productively serve as (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Tacit Beginnings Towards a Model of Scientific Thinking.Rory J. Glass - 2013 - Science & Education 22 (10):2709-2725.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The philosophy of mathematics education by Paul Ernest.Paul Ernest - 1994 - Social Epistemology 8 (2):151 – 161.
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematics, ethics and purism: an application of MacIntyre’s virtue theory.Paul Ernest - 2020 - Synthese 199 (1-2):3137-3167.
    A traditional problem of ethics in mathematics is the denial of social responsibility. Pure mathematics is viewed as neutral and value free, and therefore free of ethical responsibility. Applications of mathematics are seen as employing a neutral set of tools which, of themselves, are free from social responsibility. However, mathematicians are convinced they know what constitutes good mathematics. Furthermore many pure mathematicians are committed to purism, the ideology that values purity above applications in mathematics, and some historical reasons for this (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Philosophy of Mathematical Practice — Motivations, Themes and Prospects†.Jessica Carter - 2019 - Philosophia Mathematica 27 (1):1-32.
    A number of examples of studies from the field ‘The Philosophy of Mathematical Practice’ (PMP) are given. To characterise this new field, three different strands are identified: an agent-based, a historical, and an epistemological PMP. These differ in how they understand ‘practice’ and which assumptions lie at the core of their investigations. In the last part a general framework, capturing some overall structure of the field, is proposed.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • The History of Mathematics as Scaffolding for Introducing Prospective Teachers into the Philosophy of Mathematics.Dimitris Chassapis - 2013 - Analytic Teaching and Philosophical Praxis 34 (1):69-79.
    This paper claims that the awareness of crucial philosophical questions and controversies, which have arisen during the historical evolution of fundamental concepts, ideas and processes in mathematics, should be an essential component of the professional knowledge of student teachers who intend to teach children mathematics.
    Download  
     
    Export citation  
     
    Bookmark