Switch to: References

Citations of:

Remarks before the Princeton Bicentennial Conference on Problems in Mathematics

In Solomon Feferman, John Dawson & Stephen Kleene (eds.), Kurt Gödel: Collected Works Vol. Ii. Oxford University Press. pp. 150--153 (1990)

Add citations

You must login to add citations.
  1. Gödel’s philosophical program and Husserl’s phenomenology.Xiaoli Liu - 2010 - Synthese 175 (1):33-45.
    Gödel’s philosophical rationalism includes a program for “developing philosophy as an exact science.” Gödel believes that Husserl’s phenomenology is essential for the realization of this program. In this article, by analyzing Gödel’s philosophy of idealism, conceptual realism, and his concept of “abstract intuition,” based on clues from Gödel’s manuscripts, I try to investigate the reasons why Gödel is strongly interested in Husserl’s phenomenology and why his program for an exact philosophy is unfinished. One of the topics that has attracted much (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Effective Computation by Humans and Machines.Shagrir Oron - 2002 - Minds and Machines 12 (2):221-240.
    There is an intensive discussion nowadays about the meaning of effective computability, with implications to the status and provability of the Church–Turing Thesis (CTT). I begin by reviewing what has become the dominant account of the way Turing and Church viewed, in 1936, effective computability. According to this account, to which I refer as the Gandy–Sieg account, Turing and Church aimed to characterize the functions that can be computed by a human computer. In addition, Turing provided a highly convincing argument (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Reflections on gödel's and Gandy's reflections on Turing's thesis.David Israel - 2002 - Minds and Machines 12 (2):181-201.
    We sketch the historical and conceptual context of Turing's analysis of algorithmic or mechanical computation. We then discuss two responses to that analysis, by Gödel and by Gandy, both of which raise, though in very different ways. The possibility of computation procedures that cannot be reduced to the basic procedures into which Turing decomposed computation. Along the way, we touch on some of Cleland's views.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (2 other versions)Hyperintensional Ω-Logic.David Elohim - 2019 - In Matteo Vincenzo D'Alfonso & Don Berkich (eds.), On the Cognitive, Ethical, and Scientific Dimensions of Artificial Intelligence. Springer Verlag.
    This essay examines the philosophical significance of $\Omega$-logic in Zermelo-Fraenkel set theory with choice (ZFC). The categorical duality between coalgebra and algebra permits Boolean-valued algebraic models of ZFC to be interpreted as coalgebras. The hyperintensional profile of $\Omega$-logical validity can then be countenanced within a coalgebraic logic. I argue that the philosophical significance of the foregoing is two-fold. First, because the epistemic and modal and hyperintensional profiles of $\Omega$-logical validity correspond to those of second-order logical consequence, $\Omega$-logical validity is genuinely (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (2 other versions)Hyperintensional Ω-Logic.David Elohim - 2019 - In Matteo Vincenzo D'Alfonso & Don Berkich (eds.), On the Cognitive, Ethical, and Scientific Dimensions of Artificial Intelligence. Springer Verlag. pp. 65-82.
    This paper examines the philosophical significance of the consequence relation defined in the $\Omega$-logic for set-theoretic languages. I argue that, as with second-order logic, the hyperintensional profile of validity in $\Omega$-Logic enables the property to be epistemically tractable. Because of the duality between coalgebras and algebras, Boolean-valued models of set theory can be interpreted as coalgebras. In Section \textbf{2}, I demonstrate how the hyperintensional profile of $\Omega$-logical validity can be countenanced within a coalgebraic logic. Finally, in Section \textbf{3}, the philosophical (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Kurt Gödel and Computability Theory.Richard Zach - 2006 - In Beckmann Arnold, Berger Ulrich, Löwe Benedikt & Tucker John V. (eds.), Logical Approaches to Computational Barriers. Second Conference on Computability in Europe, CiE 2006, Swansea. Proceedings. Springer. pp. 575--583.
    Although Kurt Gödel does not figure prominently in the history of computabilty theory, he exerted a significant influence on some of the founders of the field, both through his published work and through personal interaction. In particular, Gödel’s 1931 paper on incompleteness and the methods developed therein were important for the early development of recursive function theory and the lambda calculus at the hands of Church, Kleene, and Rosser. Church and his students studied Gödel 1931, and Gödel taught a seminar (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Forms of Luminosity: Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - 2017 - Dissertation, Arché, University of St Andrews
    This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. David Elohim examines the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, undecidable (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Forms of Luminosity: Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - 2017
    This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. David Elohim examines the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, undecidable (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Gödel turned out to be an unadulterated Platonist, and apparently believed that an eternal “not” was laid up in heaven, where virtuous logicians might hope to meet it hereafter. On this Gödel commented: Concerning my “unadulterated” Platonism, it is no more unadulter.Solomon Feferman, John Dawson, Warren Goldfarb & Robert Solovay - 1995 - Bulletin of Symbolic Logic 1 (1).
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Problematic Nature of Gödel’s Disjunctions and Lucas-Penrose’s Theses.Arnon Avron - 2020 - Studia Semiotyczne 34 (1):83-108.
    We show that the name “Lucas-Penrose thesis” encompasses several different theses. All these theses refer to extremely vague concepts, and so are either practically meaningless, or obviously false. The arguments for the various theses, in turn, are based on confusions with regard to the meaning of these vague notions, and on unjustified hidden assumptions concerning them. All these observations are true also for all interesting versions of the much weaker thesis known as “Gö- del disjunction”. Our main conclusions are that (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Modal Logic and Hyperintensional Semantics for Gödelian Intuition.David Elohim - manuscript
    This essay aims to provide a modal logic for rational intuition. Similarly to treatments of the property of knowledge in epistemic logic, I argue that rational intuition can be codified by a modal operator governed by the modal $\mu$-calculus. Via correspondence results between fixed point modal propositional logic and the bisimulation-invariant fragment of monadic second-order logic, a precise translation can then be provided between the notion of 'intuition-of', i.e., the cognitive phenomenal properties of thoughts, and the modal operators regimenting the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (2 other versions)Hyperintensional Ω-Logic.David Elohim - 2019 - In Matteo Vincenzo D'Alfonso & Don Berkich (eds.), On the Cognitive, Ethical, and Scientific Dimensions of Artificial Intelligence. Springer Verlag.
    This essay examines the philosophical significance of $\Omega$-logic in Zermelo-Fraenkel set theory with choice (ZFC). The categorical duality between coalgebra and algebra permits Boolean-valued algebraic models of ZFC to be interpreted as coalgebras. The hyperintensional profile of $\Omega$-logical validity can then be countenanced within a coalgebraic logic. I argue that the philosophical significance of the foregoing is two-fold. First, because the epistemic and modal and hyperintensional profiles of $\Omega$-logical validity correspond to those of second-order logical consequence, $\Omega$-logical validity is genuinely (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Physical Church–Turing Thesis: Modest or Bold?Gualtiero Piccinini - 2011 - British Journal for the Philosophy of Science 62 (4):733-769.
    This article defends a modest version of the Physical Church-Turing thesis (CT). Following an established recent trend, I distinguish between what I call Mathematical CT—the thesis supported by the original arguments for CT—and Physical CT. I then distinguish between bold formulations of Physical CT, according to which any physical process—anything doable by a physical system—is computable by a Turing machine, and modest formulations, according to which any function that is computable by a physical system is computable by a Turing machine. (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Two dogmas of computationalism.Oron Shagrir - 1997 - Minds and Machines 7 (3):321-44.
    This paper challenges two orthodox theses: (a) that computational processes must be algorithmic; and (b) that all computed functions must be Turing-computable. Section 2 advances the claim that the works in computability theory, including Turing's analysis of the effective computable functions, do not substantiate the two theses. It is then shown (Section 3) that we can describe a system that computes a number-theoretic function which is not Turing-computable. The argument against the first thesis proceeds in two stages. It is first (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Hobson’s Conception of Definable Numbers.Zhao Fan - 2020 - History and Philosophy of Logic 41 (2):128-139.
    In this paper, I explore an intriguing view of definable numbers proposed by a Cambridge mathematician Ernest Hobson, and his solution to the paradoxes of definability. Reflecting on König’s paradox and Richard’s paradox, Hobson argues that an unacceptable consequence of the paradoxes of definability is that there are numbers that are inherently incapable of finite definition. Contrast to other interpreters, Hobson analyses the problem of the paradoxes of definability lies in a dichotomy between finitely definable numbers and not finitely definable (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Logical Foundations and Kant's Principles of Formal Logic.Srećko Kovač - 2020 - History and Philosophy of Logic 41 (1):48-70.
    The abstract status of Kant's account of his ‘general logic’ is explained in comparison with Gödel's general definition of a formal logical system and reflections on ‘abstract’ (‘absolute’) concepts. Thereafter, an informal reconstruction of Kant's general logic is given from the aspect of the principles of contradiction, of sufficient reason, and of excluded middle. It is shown that Kant's composition of logic consists in a gradual strengthening of logical principles, starting from a weak principle of contradiction that tolerates a sort (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Platonistic formalism.L. Horsten - 2001 - Erkenntnis 54 (2):173-194.
    The present paper discusses a proposal which says,roughly and with several qualifications, that thecollection of mathematical truths is identical withthe set of theorems of ZFC. It is argued that thisproposal is not as easily dismissed as outright falseor philosophically incoherent as one might think. Some morals of this are drawn for the concept ofmathematical knowledge.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Abolishing Platonism in Multiverse Theories.Stathis Livadas - 2022 - Axiomathes 32 (2):321-343.
    A debated issue in the mathematical foundations in at least the last two decades is whether one can plausibly argue for the merits of treating undecidable questions of mathematics, e.g., the Continuum Hypothesis (CH), by relying on the existence of a plurality of set-theoretical universes except for a single one, i.e., the well-known set-theoretical universe V associated with the cumulative hierarchy of sets. The multiverse approach has some varying versions of the general concept of multiverse yet my intention is to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Recursive Functions and Metamathematics: Problems of Completeness and Decidability, Gödel's Theorems.Rod J. L. Adams & Roman Murawski - 1999 - Dordrecht, Netherland: Springer Verlag.
    Traces the development of recursive functions from their origins in the late nineteenth century to the mid-1930s, with particular emphasis on the work and influence of Kurt Gödel.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Against the Judgment-Dependence of Mathematics and Logic.Alexander Paseau - 2012 - Erkenntnis 76 (1):23-40.
    Although the case for the judgment-dependence of many other domains has been pored over, surprisingly little attention has been paid to mathematics and logic. This paper presents two dilemmas for a judgment-dependent account of these areas. First, the extensionality-substantiality dilemma: in each case, either the judgment-dependent account is extensionally inadequate or it cannot meet the substantiality condition (roughly: non-vacuous specification). Second, the extensionality-extremality dilemma: in each case, either the judgment-dependent account is extensionally inadequate or it cannot meet the extremality condition (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Prädikative Klassen.Ralf-Dieter Schindler - 1993 - Erkenntnis 39 (2):209 - 241.
    We consider certain predicative classes with respect to their bearing on set theory, namely on its semantics, and on its ontological power. On the one hand, our predicative classes will turn out to be perfectly suited for establishing a nice hierarchy of metalanguages starting from the usual set theoretical language. On the other hand, these classes will be seen to be fairly inappropriate for the formulation of strong principles of infinity. The motivation for considering this very type of classes is (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Notion of Explanation in Gödel’s Philosophy of Mathematics.Krzysztof Wójtowicz - 2019 - Studia Semiotyczne—English Supplement 30:85-106.
    The article deals with the question of in which sense the notion of explanation can be applied to Kurt Gödel’s philosophy of mathematics. Gödel, as a mathematical realist, claims that in mathematics we are dealing with facts that have an objective character. One of these facts is the solvability of all well-formulated mathematical problems—and this fact requires a clarification. The assumptions on which Gödel’s position is based are: metaphysical realism: there is a mathematical universe, it is objective and independent of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On causality as the fundamental concept of Gödel’s philosophy.Srećko Kovač - 2020 - Synthese 197 (4):1803-1838.
    This paper proposes a possible reconstruction and philosophical-logical clarification of Gödel's idea of causality as the philosophical fundamental concept. The results are based on Gödel's published and non-published texts (including Max Phil notebooks), and are established on the ground of interconnections of Gödel's dispersed remarks on causality, as well as on the ground of his general philosophical views. The paper is logically informal but is connected with already achieved results in the formalization of a causal account of Gödel's onto-theological theory. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Gödel’s Philosophical Challenge.Wilfried Sieg - 2020 - Studia Semiotyczne 34 (1):57-80.
    The incompleteness theorems constitute the mathematical core of Gödel’s philosophical challenge. They are given in their “most satisfactory form”, as Gödel saw it, when the formality of theories to which they apply is characterized via Turing machines. These machines codify human mechanical procedures that can be carried out without appealing to higher cognitive capacities. The question naturally arises, whether the theorems justify the claim that the human mind has mathematical abilities that are not shared by any machine. Turing admits that (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Informal and Absolute Proofs: Some Remarks from a Gödelian Perspective.Gabriella Crocco - 2019 - Topoi 38 (3):561-575.
    After a brief discussion of Kreisel’s notion of informal rigour and Myhill’s notion of absolute proof, Gödel’s analysis of the subject is presented. It is shown how Gödel avoids the notion of informal proof because such a use would contradict one of the senses of “formal” that Gödel wants to preserve. This Gödelian notion of “formal” is directly tied to his notion of absolute proof and to the question of the general applicability of concepts, in a way that overcomes both (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On effective procedures.Carol E. Cleland - 2002 - Minds and Machines 12 (2):159-179.
    Since the mid-twentieth century, the concept of the Turing machine has dominated thought about effective procedures. This paper presents an alternative to Turing's analysis; it unifies, refines, and extends my earlier work on this topic. I show that Turing machines cannot live up to their billing as paragons of effective procedure; at best, they may be said to provide us with mere procedure schemas. I argue that the concept of an effective procedure crucially depends upon distinguishing procedures as definite courses (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Remarks on the development of computability.Stewart Shapiro - 1983 - History and Philosophy of Logic 4 (1-2):203-220.
    The purpose of this article is to examine aspects of the development of the concept and theory of computability through the theory of recursive functions. Following a brief introduction, Section 2 is devoted to the presuppositions of computability. It focuses on certain concepts, beliefs and theorems necessary for a general property of computability to be formulated and developed into a mathematical theory. The following two sections concern situations in which the presuppositions were realized and the theory of computability was developed. (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Kategoria wyjaśniania a filozofia matematyki Gödla.Krzysztof Wójtowicz - 2018 - Studia Semiotyczne 32 (2):107-129.
    Artykuł dotyczy zagadnienia, w jakim sensie można stosować kategorię wyjaśnienia do interpretacji filozofii matematyki Kurta Gödla. Gödel – jako realista matematyczny – twierdzi bowiem, że w wypadku matematyki mamy do czynienia z niezależnymi od nas faktami. Jednym z owych faktów jest właśnie rozwiązywalność wszystkich dobrze postawionych problemów matematycznych – i ten fakt domaga się wyjaśnienia. Kluczem do zrozumienia stanowiska Gödla jest identyfikacja założeń, na których się opiera: metafizyczny realizm: istnieje uniwersum matematyczne, ma ono charakter obiektywny, niezależny od nas; optymizm epistemologiczny: (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Truth vs. provability – philosophical and historical remarks.Roman Murawski - 2002 - Logic and Logical Philosophy 10:93.
    Download  
     
    Export citation  
     
    Bookmark   3 citations