- The Physical Church–Turing Thesis: Modest or Bold?Gualtiero Piccinini - 2011 - British Journal for the Philosophy of Science 62 (4):733-769.details
|
|
Gödel’s philosophical program and Husserl’s phenomenology.Xiaoli Liu - 2010 - Synthese 175 (1):33-45.details
|
|
Recursive Functions and Metamathematics: Problems of Completeness and Decidability, Gödel's Theorems.Rod J. L. Adams & Roman Murawski - 1999 - Dordrecht, Netherland: Springer Verlag.details
|
|
The Problematic Nature of Gödel’s Disjunctions and Lucas-Penrose’s Theses.Arnon Avron - 2020 - Studia Semiotyczne 34 (1):83-108.details
|
|
Kategoria wyjaśniania a filozofia matematyki Gödla.Krzysztof Wójtowicz - 2018 - Studia Semiotyczne 32 (2):107-129.details
|
|
The Notion of Explanation in Gödel’s Philosophy of Mathematics.Krzysztof Wójtowicz - 2019 - Studia Semiotyczne—English Supplement 30:85-106.details
|
|
Remarks on the development of computability.Stewart Shapiro - 1983 - History and Philosophy of Logic 4 (1-2):203-220.details
|
|
Gödel’s Philosophical Challenge.Wilfried Sieg - 2020 - Studia Semiotyczne 34 (1):57-80.details
|
|
Two dogmas of computationalism.Oron Shagrir - 1997 - Minds and Machines 7 (3):321-44.details
|
|
Prädikative Klassen.Ralf-Dieter Schindler - 1993 - Erkenntnis 39 (2):209 - 241.details
|
|
Against the Judgment-Dependence of Mathematics and Logic.Alexander Paseau - 2012 - Erkenntnis 76 (1):23-40.details
|
|
(1 other version)Forms of Luminosity: Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - 2017details
|
|
(1 other version)Forms of Luminosity: Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - 2017 - Dissertation, Arché, University of St Andrewsdetails
|
|
Effective Computation by Humans and Machines.Shagrir Oron - 2002 - Minds and Machines 12 (2):221-240.details
|
|
Truth vs. provability – philosophical and historical remarks.Roman Murawski - 2002 - Logic and Logical Philosophy 10:93.details
|
|
Abolishing Platonism in Multiverse Theories.Stathis Livadas - 2022 - Axiomathes 32 (2):321-343.details
|
|
On causality as the fundamental concept of Gödel’s philosophy.Srećko Kovač - 2020 - Synthese 197 (4):1803-1838.details
|
|
Logical Foundations and Kant's Principles of Formal Logic.Srećko Kovač - 2020 - History and Philosophy of Logic 41 (1):48-70.details
|
|
(2 other versions)Hyperintensional Ω-Logic.David Elohim - 2019 - In Matteo Vincenzo D'Alfonso & Don Berkich (eds.), On the Cognitive, Ethical, and Scientific Dimensions of Artificial Intelligence. Springer Verlag. pp. 65-82.details
|
|
Reflections on gödel's and Gandy's reflections on Turing's thesis.David Israel - 2002 - Minds and Machines 12 (2):181-201.details
|
|
Platonistic formalism.L. Horsten - 2001 - Erkenntnis 54 (2):173-194.details
|
|
Hobson’s Conception of Definable Numbers.Zhao Fan - 2020 - History and Philosophy of Logic 41 (2):128-139.details
|
|
Informal and Absolute Proofs: Some Remarks from a Gödelian Perspective.Gabriella Crocco - 2019 - Topoi 38 (3):561-575.details
|
|
On effective procedures.Carol E. Cleland - 2002 - Minds and Machines 12 (2):159-179.details
|
|
(2 other versions)Hyperintensional Ω-Logic.David Elohim - 2019 - In Matteo Vincenzo D'Alfonso & Don Berkich (eds.), On the Cognitive, Ethical, and Scientific Dimensions of Artificial Intelligence. Springer Verlag.details
|
|
Kurt Gödel and Computability Theory.Richard Zach - 2006 - In Beckmann Arnold, Berger Ulrich, Löwe Benedikt & Tucker John V. (eds.), Logical Approaches to Computational Barriers. Second Conference on Computability in Europe, CiE 2006, Swansea. Proceedings. Springer. pp. 575--583.details
|
|
A Modal Logic and Hyperintensional Semantics for Gödelian Intuition.David Elohim - manuscriptdetails
|
|
(2 other versions)Hyperintensional Ω-Logic.David Elohim - 2019 - In Matteo Vincenzo D'Alfonso & Don Berkich (eds.), On the Cognitive, Ethical, and Scientific Dimensions of Artificial Intelligence. Springer Verlag.details
|
|
Gödel turned out to be an unadulterated Platonist, and apparently believed that an eternal “not” was laid up in heaven, where virtuous logicians might hope to meet it hereafter. On this Gödel commented: Concerning my “unadulterated” Platonism, it is no more unadulter.Solomon Feferman, John Dawson, Warren Goldfarb & Robert Solovay - 1995 - Bulletin of Symbolic Logic 1 (1).details
|
|